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Abstract 

Although variation in effect sizes and predicted values among studies of similar phenomena is inevitable, such 
variation far exceeds what might be produced by sampling error alone. One possible explanation for variation 
among results is differences among researchers in the decisions they make regarding statistical analyses. A grow-
ing array of studies has explored this analytical variability in different fields and has found substantial variability 
among results despite analysts having the same data and research question. Many of these studies have been 
in the social sciences, but one small “many analyst” study found similar variability in ecology. We expanded the scope 
of this prior work by implementing a large-scale empirical exploration of the variation in effect sizes and model pre-
dictions generated by the analytical decisions of different researchers in ecology and evolutionary biology. We used 
two unpublished datasets, one from evolutionary ecology (blue tit, Cyanistes caeruleus, to compare sibling number 
and nestling growth) and one from conservation ecology (Eucalyptus, to compare grass cover and tree seedling 
recruitment). The project leaders recruited 174 analyst teams, comprising 246 analysts, to investigate the answers 
to prespecified research questions. Analyses conducted by these teams yielded 141 usable effects (compatible 
with our meta-analyses and with all necessary information provided) for the blue tit dataset, and 85 usable effects 
for the Eucalyptus dataset. We found substantial heterogeneity among results for both datasets, although the pat-
terns of variation differed between them. For the blue tit analyses, the average effect was convincingly negative, 
with less growth for nestlings living with more siblings, but there was near continuous variation in effect size 
from large negative effects to effects near zero, and even effects crossing the traditional threshold of statistical sig-
nificance in the opposite direction. In contrast, the average relationship between grass cover and Eucalyptus seedling 
number was only slightly negative and not convincingly different from zero, and most effects ranged from weakly 
negative to weakly positive, with about a third of effects crossing the traditional threshold of significance in one direc-
tion or the other. However, there were also several striking outliers in the Eucalyptus dataset, with effects far from zero. 
For both datasets, we found substantial variation in the variable selection and random effects structures among analy-
ses, as well as in the ratings of the analytical methods by peer reviewers, but we found no strong relationship 
between any of these and deviation from the meta-analytic mean. In other words, analyses with results that were 
far from the mean were no more or less likely to have dissimilar variable sets, use random effects in their models, 
or receive poor peer reviews than those analyses that found results that were close to the mean. The existence 
of substantial variability among analysis outcomes raises important questions about how ecologists and evolutionary 
biologists should interpret published results, and how they should conduct analyses in the future.

Keywords Analytical heterogeneity, Metascience, Many-analyst, Replication crisis, Reproducibility

Introduction
One value of science derives from its production of repli-
cable, and thus reliable, results. When we repeat a study 
using the original methods, we should be able to expect 
a similar result. However, perfect replicability is not a 
reasonable goal. Effect sizes will vary, and even reverse in 
sign, by chance alone [37]. Observed patterns can differ 
for other reasons as well. It could be that we do not suffi-
ciently understand the conditions that led to the original 
result so when we seek to replicate it, the conditions dif-
fer due to some “hidden moderator”. This hidden moder-
ator hypothesis is described by meta-analysts in ecology 
and evolutionary biology as “true biological heteroge-
neity” [93]. This idea of true heterogeneity is popular in 
ecology and evolutionary biology, and there are good 
reasons to expect it in the complex systems in which we 
work [94]. However, despite similar expectations in psy-
chology, recent evidence in that discipline contradicts 
the hypothesis that moderators are common obstacles 
to replicability, as variability in results in a large “many 
labs” collaboration was mostly unrelated to commonly 

hypothesized moderators such as the conditions under 
which the studies were administered [50]. Another pos-
sible explanation for variation in effect sizes is that 
researchers often present biased samples of results, thus 
reducing the likelihood that later studies will produce 
similar effect sizes [33, 34, 80, 82, 83]. It also may be that 
although researchers did successfully replicate the condi-
tions, the experiment, and measured variables, analyti-
cal decisions differed sufficiently among studies to create 
divergent results [96, 99].

Analytical decisions vary among studies because 
researchers have many options. Researchers need to 
decide how to exclude possibly anomalous or unreli-
able data, how to construct variables, which variables 
to include in their models, and which statistical meth-
ods to use. Depending on the dataset, this short list of 
choices could encompass thousands or millions of pos-
sible alternative specifications [100]. However, research-
ers making these decisions presumably do so with the 
goal of doing the best possible analysis, or at least the 
best analysis within their current skill set. Thus, it seems 
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likely that some specification options are more probable 
than others, possibly because they have previously been 
shown (or claimed) to be better, or because they are more 
well known. Of course, some of these different analyses 
(maybe many of them) may be equally valid alternatives. 
Regardless, on probably any topic in ecology and evolu-
tionary biology, we can encounter differences in choices 
of data analysis. The extent of these differences in analy-
ses and the degree to which these differences influence 
the outcomes of analyses and therefore studies’ conclu-
sions are important empirical questions. These questions 
are especially important given that many papers draw 
conclusions after applying a single method, or even a sin-
gle statistical model, to analyze a dataset.

The possibility that different analytical choices could 
lead to different outcomes has long been recognized 
[36], and various efforts to address this possibility have 
been pursued in the literature. For instance, one common 
method in ecology and evolutionary biology involves cre-
ating a set of candidate models, each consisting of a dif-
ferent (though often similar) set of predictor variables, 
and then, for the predictor variable of interest, averaging 
the slope across all models (i.e. model averaging) [20, 40]. 
This method reduces the chance that a conclusion is con-
tingent upon a single model specification, though use and 
interpretation of this method is not without challenges 
[40]. Further, the models compared to each other typi-
cally differ only in the inclusion or exclusion of certain 
predictor variables and not in other important ways, such 
as methods of parameter estimation. More explicit exam-
ination of outcomes of differences in model structure, 
model type, data exclusion, or other analytical choices 
can be implemented through sensitivity analyses (e.g., 
[78]). Sensitivity analyses, however, are typically rather 
narrow in scope and are designed to assess the sensitiv-
ity of analytical outcomes to a particular analytical choice 
rather than to a large universe of choices. Recently, 
however, analysts in the social sciences have proposed 
extremely thorough sensitivity analysis, including ‘mul-
tiverse analysis’ [104] and the ‘specification curve’ [99], 
as a means of increasing the reliability of results. With 
these methods, researchers identify relevant decision 
points encountered during analysis and conduct the anal-
ysis many times to incorporate many plausible decisions 
made at each of these points. The study’s conclusions are 
then based on a broad set of the possible analyses and so 
allow the analyst to distinguish between robust conclu-
sions and those that are highly contingent on particular 
model specifications. These are useful outcomes, but 
specifying a universe of possible modelling decisions is 
not a trivial undertaking. Further, the analyst’s knowledge 
and biases will influence decisions about the bounda-
ries of that universe, and so there will always be room 

for disagreement among analysts about what to include. 
Including more specifications is not necessarily better. 
Some analytical decisions are better justified than oth-
ers, and including biologically implausible specifications 
may undermine this process. Regardless, these power-
ful methods have yet to be adopted, and even the more 
limited forms of sensitivity analyses are not particularly 
widespread. Most studies publish a small set of analy-
ses and so the existing literature does not provide much 
insight into the degree to which published results are 
contingent on analytical decisions.

Despite the potential major impacts of analytical deci-
sions on variance in results, the outcomes of differ-
ent individuals’ data analysis choices have only recently 
begun to receive much empirical attention. The only for-
mal exploration of this that we were aware of when we 
submitted our Stage 1 manuscript were (1) an analysis 
in social science that asked whether male professional 
football (soccer) players with darker skin tone were more 
likely to be issued red cards (ejection from the game for 
rule violation) than players with lighter skin tone [96] 
and (2) an analysis in neuroimaging which evaluated 
nine separate hypotheses involving the neurological 
responses detected with fMRI in 108 participants divided 
between two treatments in a decision making task [15]. 
Several others have been published since [16, 23, 44, 92], 
and we recently learned of an earlier small study in ecol-
ogy [103]. In the red card study, 29 teams designed and 
implemented analyses of a dataset provided by the study 
coordinators [96]. Analyses were peer reviewed (results 
blind) by at least two other participating analysts,a level 
of scrutiny consistent with standard pre-publication peer 
review. Among the final 29 analyses, odds ratios varied 
from 0.89 to 2.93, meaning point estimates varied from 
having players with lighter skin tones receive more red 
cards (odds ratio < 1) to a strong effect of players with 
darker skin tones receiving more red cards (odds ratio > 
1). Twenty of the 29 teams found a statistically significant 
effect in the predicted direction of players with darker 
skin tones being issued more red cards. This degree of 
variation in peer-reviewed analyses from identical data 
is striking, but the generality of this finding has only just 
begun to be formally investigated [16, 23, 44, 92].

In the neuroimaging study, 70 teams evaluated each 
of the nine different hypotheses with the available fMRI 
data [15]. These 70 teams followed a divergent set of 
workflows that produced a wide range of results. The 
rate of reporting of statistically significant support for 
the nine hypotheses ranged from 21 to 84%, and for each 
hypothesis on average, 20% of research teams observed 
effects that differed substantially from the majority of 
other teams. Some of the variability in results among 
studies could be explained by analytical decisions such 
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as choice of software package, smoothing function, and 
parametric versus non-parametric corrections for multi-
ple comparisons. However, substantial variability among 
analyses remained unexplained, and presumably emerged 
from the many different decisions each analyst made in 
their long workflows. Such variability in results among 
analyses from this dataset and from the very different 
red-card dataset suggests that sensitivity of analytical 
outcome to analytical choices may characterize many dis-
tinct fields, as several more recent many-analyst studies 
also suggest [16, 44, 92].

To further develop the empirical understanding of the 
effects of analytical decisions on study outcomes, we 
chose to estimate the extent to which researchers’ data 
analysis choices drive differences in effect sizes, model 
predictions, and qualitative conclusions in ecology and 
evolutionary biology. This is an important extension of 
the meta-research agenda of evaluating factors influ-
encing replicability in ecology, evolutionary biology, 
and beyond   [31]. To examine the effects of analytical 
decisions, we used two different datasets and recruited 
researchers to analyze one or the other of these data-
sets to answer a question we defined. The first question 
was “To what extent is the growth of nestling blue tits 
(Cyanistes caeruleus) influenced by competition with 
siblings?” To answer this question, we provided a data-
set that includes brood size manipulations from 332 
broods conducted over 3 years at Wytham Wood, UK. 
The second question was “How does grass cover influ-
ence  Eucalyptus  spp. seedling recruitment?” For this 
question, analysts used a dataset that includes, among 
other variables, number of seedlings in different size 
classes, percentage cover of different life forms, tree 
canopy cover, and distance from canopy edge from 351 
quadrats spread among 18 sites in Victoria, Australia.

We explored the impacts of data analysts’ choices 
with descriptive statistics and with a series of tests to 
attempt to explain the variation among effect sizes and 
predicted values of the dependent variable produced by 
the different analysis teams for both datasets separately. 
To describe the variability, we present forest plots of 
the standardized effect sizes and predicted values pro-
duced by each of the analysis teams, estimate hetero-
geneity (both absolute,τ 2 , and proportional, I2) in effect 
size and predicted values among the results produced 
by these different teams, and calculate a similarity index 
that quantifies variability among the predictor variables 
selected for the different statistical models constructed 
by the different analysis teams. These descriptive sta-
tistics provide the first estimates of the extent to which 
explanatory statistical models and their outcomes in 
ecology and evolutionary biology vary based on the 
decisions of different data analysts. We then quantified 

the degree to which the variability in effect size and 
predicted values could be explained by (1) variation in 
the quality of analyses as rated by peer reviewers and 
(2) the similarity of the choices of predictor variables 
between individual analyses.

Methods
This project involved a series of steps (1–6) that began 
with identifying datasets for analyses and continued 
through recruiting independent groups of scientists to 
analyze the data, allowing the scientists to analyze the 
data as they saw fit, generating peer review ratings of 
the analyses (based on methods, not results), evaluat-
ing the variation in effects among the different analyses, 
and producing the final manuscript.

Step 1: Select datasets
We used two previously unpublished datasets, one from 
evolutionary ecology and the other from ecology and 
conservation.

Evolutionary ecology
Our evolutionary ecology dataset is relevant to a sub-
discipline of life-history research which focuses on iden-
tifying costs and trade-offs associated with different 
phenotypic conditions. These data were derived from a 
brood-size manipulation experiment imposed on wild 
birds nesting in boxes provided by researchers in an 
intensively studied population. Understanding how the 
growth of nestlings is influenced by the numbers of sib-
lings in the nest can give researchers insights into fac-
tors such as the evolution of clutch size, determination 
of provisioning rates by parents, and optimal levels of 
sibling competition [25, 77, 89, 110, 112]. Data analysts 
were provided this dataset and instructed to answer the 
following question: “To what extent is the growth of nest-
ling blue tits (Cyanistes caeruleus) influenced by compe-
tition with siblings?”

Researchers conducted brood size manipulations and 
population monitoring of blue tits at Wytham Wood, a 
380-ha woodland in Oxfordshire, UK (1° 20′ W, 51° 47′ 
N). Researchers regularly checked approximately 1100 
artificial nest boxes at the site and monitored the 330 to 
450 blue tit pairs occupying those boxes in 2001–2003 
during the experiment. Nearly all birds made only one 
breeding attempt during the April to June study period in 
a given year. At each blue tit nest, researchers recorded the 
date the first egg appeared, clutch size, and hatching date. 
For all chicks alive at age 14 days, researchers measured 
mass and tarsus length and fitted a uniquely numbered, 
British Trust for Ornithology (BTO) aluminum leg ring. 
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Researchers attempted to capture all adults at their nests 
between day 6 and day 14 of the chick-rearing period. For 
these captured adults, researchers measured mass, tarsus 
length, and wing length and fitted a uniquely numbered 
BTO leg ring. During the 2001–2003 breeding seasons, 
researchers manipulated brood sizes using cross fostering. 
They matched broods for hatching date and brood size 
and moved chicks between these paired nests 1 or 2 days 
after hatching. They sought to either enlarge or reduce all 
manipulated broods by approximately one fourth. To con-
trol for effects of being moved, each reduced brood had 
a portion of its brood replaced by chicks from the paired 
increased brood, and vice versa. Net manipulations varied 
from plus or minus four chicks in broods of 12 to 16 to 
plus or minus one chick in broods of 4 or 5. Researchers 
left approximately one third of all broods unmanipulated. 
These unmanipulated broods were not selected systemati-
cally to match manipulated broods in clutch size or laying 
date. We have mass and tarsus length data from 3720 indi-
vidual chicks divided among 167 experimentally enlarged 
broods, 165 experimentally reduced broods, and 120 
unmanipulated broods. The full list of variables included 
in the dataset is publicly available (https:// osf. io/ hdv8m), 
along with the data (https:// osf. io/ qjzby).

Ecology and conservation

Additional Explanation:

Shortly after beginning to recruit analysts, several analysts noted a small 
set of related errors in the blue tit dataset. We corrected the errors, 
replaced the dataset on our OSF site, and emailed the analysts on 19 
April 2020 to instruct them to use the revised data. The email to ana-
lysts is available here (https:// osf. io/ 4h53z). The errors are explained 
in that email.

Our ecology and conservation dataset is relevant to a 
sub-discipline of conservation research which focuses on 
investigating how best to revegetate private land in agri-
cultural landscapes. These data were collected on private 
land under the Bush Returns program, an incentive sys-
tem where participants entered into a contract with the 
Goulburn Broken Catchment Management Authority 
and received annual payments if they executed prede-
termined restoration activities. This particular dataset is 
based on a passive regeneration initiative, where livestock 
grazing was removed from the property in the hopes that 
the Eucalyptus spp. overstorey would regenerate without 
active (and expensive) planting. Analyses of some related 
data have been published [67, 113] but those analyses do 
not address the question analysts answered in our study. 
Data analysts were provided this dataset and instructed 

to answer the following question: “How does grass cover 
influence Eucalyptus spp. seedling recruitment?”.

Researchers conducted three rounds of surveys at 18 sites 
across the Goulburn Broken catchment in northern Victo-
ria, Australia, in winter and spring 2006 and autumn 2007. 
In each survey period, a different set of 15 × 15 m quad-
rats were randomly allocated across each site within 60 m 
of existing tree canopies. The number of quadrats at each 
site depended on the size of the site, ranging from four at 
smaller sites to 11 at larger sites. The total number of quad-
rats surveyed across all sites and seasons was 351. The 
number of Eucalyptus spp. seedlings was recorded in each 
quadrat along with information on the GPS location, aspect, 
tree canopy cover, distance to tree canopy, and position in 
the landscape. Ground layer plant species composition was 
recorded in three 0.5 × 0.5 m sub-quadrats within each 
quadrat. Subjective cover estimates of each species as well 
as bare ground, litter, rock and moss/lichen/soil crusts were 
recorded. Subsequently, this was augmented with informa-
tion about the precipitation and solar radiation at each GPS 
location. The full list of variables included in the dataset is 
publicly available (https:// osf. io/ r5gbn), along with the data 
(https:// osf. io/ qz5cu).

Step 2: Recruitment and initial survey of analysts
The lead team (TP, HF, SN, EG, SG, PV, DH, FF) created 
a publicly available document providing a general descrip-
tion of the project (https:// osf. io/ mn5aj/). The project was 
advertised at conferences, via Twitter, using mailing lists 
for ecological societies (including Ecolog, Evoldir, and lists 
for the Environmental Decisions Group, and Transpar-
ency in Ecology and Evolution), and via word of mouth. 
The target population was active ecology, conservation, or 
evolutionary biology researchers with a graduate degree 
(or currently studying for a graduate degree) in a relevant 
discipline. Researchers could choose to work indepen-
dently or in a small team. For the sake of simplicity, we 
refer to these as “analysis teams” though some comprised 
one individual. We aimed for a minimum of 12 analysis 
teams independently evaluating each dataset (see sam-
ple size justification below). We simultaneously recruited 
volunteers to peer review the analyses conducted by the 
other volunteers through the same channels. Our goal 
was to recruit a similar number of peer reviewers and ana-
lysts, and to ask each peer reviewer to review a minimum 
of four analyses. If we were unable to recruit at least half 
the number of reviewers as analysis teams, we planned to 
ask analysts to serve also as reviewers (after they had com-
pleted their analyses), but this was unnecessary. Therefore, 
no data analysts peer reviewed analyses of the dataset they 
had analyzed. All analysts and reviewers were offered the 
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opportunity to share co-authorship on this manuscript and 
we planned to invite them to participate in the collabora-
tive process of producing the final manuscript. All analysts 
signed [digitally] a consent (ethics) document (https:// osf. 
io/ xyp68/) approved by the Whitman College Institutional 
Review Board prior to being allowed to participate.

Preregistration Deviation:

Due to the large number of recruited analysts and reviewers 
and the anticipated challenges of receiving and integrating feedback 
from so many authors, we limited analyst and reviewer participation 
in the production of the final manuscript to an invitation to call attention 
to serious problems with the manuscript draft.

We identified our minimum number of analysts per data-
set by considering the number of effects needed in a meta-
analysis to generate an estimate of heterogeneity ( τ 2 ) with a 
95% confidence interval that does not encompass zero. This 
minimum sample size is invariant regardless of τ 2 . This is 
because the same t-statistic value will be obtained by the 
same sample size regardless of variance ( τ 2 ). We see this by 
first examining the formula for the standard error, SE  for 
variance, ( τ 2 ) or ( SEτ 2 ) assuming normality in an underly-
ing distribution of effect sizes [51]:

and then rearranging the above formula to show how the 
t-statistic is independent of τ2 , as seen below.

We then find a minimum n = 12 according to this 
formula.

Step 3: Primary data analyses
Analysis teams registered and answered a demographic 
and expertise survey (https:// osf. io/ seqzy/). We then pro-
vided them with the dataset of their choice and requested 
that they answer a specific research question. For the 
evolutionary ecology dataset that question was “To what 
extent is the growth of nestling blue tits (Cyanistes caer-
uleus) influenced by competition with siblings?” and for 
the conservation ecology dataset it was “How does grass 
cover influence Eucalyptus spp. seedling recruitment?” 
Once their analysis was complete, they answered a struc-
tured survey (https:// osf. io/ neyc7/), providing analysis 
technique, explanations of their analytical choices, quan-
titative results, and a statement describing their conclu-
sions. They also were asked to upload their analysis files 
(including the dataset as they formatted it for analysis 

SE(τ 2) =
2τ 4

n− 1

t =
τ 2

SE
(

τ 2
) =

√

n− 1

2

and their analysis code [if applicable]) and a detailed 
journal-ready statistical methods section.

Additional Information:

As is common in many studies in ecology and evolutionary biology, 
the datasets we provided contained many variables, and the research 
questions we provided could be addressed by our datasets in many dif-
ferent ways. For instance, volunteer analysts had to choose the depend-
ent (response) variable and the independent variable, and make numer-
ous other decisions about which variables and data to use and how to 
structure their model.

Preregistration Deviation:

We originally planned to have analysts complete a single survey (https:// 
osf. io/ neyc7/), but after we evaluated the results of that survey, we real-
ized we would need a second survey (https:// osf. io/ 8w3v5/) to ade-
quately collect the information we needed to evaluate heterogeneity 
of results (step 5). We provided a set of detailed instructions with the fol-
low-up survey, and these instructions are publicly available and can be 
found within the following files (blue tit: https:// osf. io/ kr2g9, Eucalyp-
tus: https:// osf. io/ dfvym).

Step 4: Peer reviews of analyses
At minimum, each analysis was evaluated by four dif-
ferent reviewers, and each volunteer peer reviewer 
was randomly assigned methods sections from at least 
four analyst teams (the exact number varied). Each 
peer reviewer registered and answered a demographic 
and expertise survey identical to that asked of the ana-
lysts, except we did not ask about “team name” since 
reviewers did not work in teams. Reviewers evaluated 
the methods of each of their assigned analyses one at 
a time in a sequence determined by the project lead-
ers. We systematically assigned the sequence so that, 
if possible, each analysis was allocated to each position 
in the sequence for at least one reviewer. For instance, 
if each reviewer were assigned four analyses to review, 
then each analysis would be the first analysis assigned 
to at least one reviewer, the second analysis assigned 
to another reviewer, the third analysis assigned to yet 
another reviewer, and the fourth analysis assigned to a 
fourth reviewer. Balancing the order in which review-
ers saw the analyses controls for order effects, e.g. a 
reviewer might be less critical of the first methods sec-
tion they read than the last.

The process for a single reviewer was as follows. First, 
the reviewer received a description of the methods of 
a single analysis. This included the narrative methods 
section, the analysis team’s answers to our survey ques-
tions regarding their methods, including analysis code, 
and the dataset. The reviewer was then asked, in an 
online survey (https:// osf. io/ 4t36u/), to rate that anal-
ysis on a scale of 0–100 based on this prompt: “Rate 
the overall appropriateness of this analysis to answer 
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the research question (one of the two research ques-
tions inserted here) with the available data”. To help 
you calibrate your rating, please consider the following 
guidelines:

• 100. A perfect analysis with no conceivable 
improvements from the reviewer

• 75. An imperfect analysis but the needed changes 
are unlikely to dramatically alter outcomes

• 50. A flawed analysis likely to produce either an 
unreliable estimate of the relationship or an over-
precise estimate of uncertainty

• 25. A flawed analysis likely to produce an unrelia-
ble estimate of the relationship and an over-precise 
estimate of uncertainty

• 0. A dangerously misleading analysis, certain to 
produce both an estimate that is wrong and a sub-
stantially over-precise estimate of uncertainty that 
places undue confidence in the incorrect estimate.

*Please note that these values are meant to calibrate 
your ratings. We welcome ratings of any number between 
0 and 100.

After providing this rating, the reviewer was pre-
sented with this prompt, in multiple-choice format: 
“Would the analytical methods presented produce 
an analysis that is (a) publishable as is, (b) publish-
able with minor revision, (c) publishable with major 
revision, (d) deeply flawed and unpublishable?” The 
reviewer was then provided with a series of text boxes 
and the following prompts: “Please explain your rat-
ings of this analysis. Please evaluate the choice of sta-
tistical analysis type. Please evaluate the process of 
choosing variables for and structuring the statistical 
model. Please evaluate the suitability of the variables 
included in (or excluded from) the statistical model. 
Please evaluate the suitability of the structure of the 
statistical model. Please evaluate choices to exclude 
or not exclude subsets of the data. Please evaluate any 
choices to transform data (or, if there were no transfor-
mations, but you think there should have been, please 
discuss that choice).” After submitting this review, a 
methods section from a second analysis was then made 
available to the reviewer. This same sequence was fol-
lowed until all analyses allocated to a given reviewer 
were provided and reviewed. After providing the final 
review, the reviewer was simultaneously provided with 
all four (or more) methods sections the reviewer had 
just completed reviewing, the option to revise their 
original ratings, and a text box to provide an explana-
tion. The invitation to revise the original ratings was as 

follows: “If, now that you have seen all the analyses you 
are reviewing, you wish to revise your ratings of any of 
these analyses, you may do so now.” The text box was 
prefaced with this prompt: “Please explain your choice 
to revise (or not to revise) your ratings.”

Additional Information: unregistered analysis

To determine how consistent peer reviewers were in their ratings, we 
assessed inter-rater reliability among reviewers for both the categorical 
and quantitative ratings combining blue tit and Eucalyptus data using 
Krippendorff’s alpha for ordinal and continuous data respectively. This 
provides a value that is between -1 (total disagreement between review-
ers) and 1 (total agreement between reviewers).

Step 5: Evaluate variation

Additional Information: analysis schematic

The lead team conducted a range of preregistered and exploratory analy-
ses to understand variation between analyses and their results. Figure 1 
is intended to clarify the analyses described below.

The lead team conducted the analyses outlined in this 
section. We described the variation in model specifica-
tion in several ways. We calculated summary statistics 
describing variation among analyses, including mean, SD, 
and range of number of variables per model included as 
fixed effects, the number of interaction terms, the num-
ber of random effects, and the mean, SD, and range of 
sample sizes. We also present the number of analyses in 
which each variable was included. We summarized the 
variability in standardized effect sizes and predicted val-
ues of dependent variables among the individual analyses 
using standard random effects meta-analytic techniques. 
First, we derived standardized effect sizes from each indi-
vidual analysis. We did this for all linear models or gen-
eralized linear models by converting the t value and the 
degree of freedom (df) associated with regression coeffi-
cients (e.g. the effect of the number of siblings [predictor] 
on growth [response] or the effect of grass cover [predic-
tor] on seedling recruitment [response]) to the correla-
tion coefficient, r, using the following:

This formula can only be applied if t and  df  values 
originate from linear or generalized linear models 
[72]. If, instead, linear mixed-effects models (LMMs) 
or generalized linear mixed-effects models (GLMMs) 
were used by a given analysis, the exact  df  cannot be 
estimated. However, adjusted  df  can be estimated, 

r =
t2

(t2 + df )
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for example, using the Satterthwaite approximation 
of  df,  dfS, [note that SAS uses this approximation to 
obtain  df  for LMMs and GLMMs; [63]. For analy-
ses using either LMMs or GLMMs that do not pro-
duce  dfS  we planned to obtain  dfS  by rerunning the 
same (G)LMMs using the lmer() or glmer() function in 
the lmerTest package in R [56, 87].

Preregistration Deviation:

Rather than re-run these analyses ourselves, we sent a follow-up survey 
(referenced above under “Primary data analyses”) to analysts and asked 
them to follow our instructions for producing this information. The 
instructions are publicly available and can be found within the following 
files (blue tit: https:// osf. io/ kr2g9, Eucalyptus: https:// osf. io/ dfvym).

We then used the t values and dfS from the models to 
obtain r as per the formula above. All r and accompany-
ing df (or dfS) were converted to Fisher’s Zr.

and its sampling variance;  1/(n–3)  where  n=df+1. Any 
analyses from which we could not derive a signed  Zr, 

Zr =
1

2
ln

(

1+ r

1− r

)

for instance one with a quadratic function in which the 
slope changed sign, were considered unusable for analy-
ses of  Zr. We expected such analyses would be rare. In 
fact, most submitted analyses excluded from our meta-
analysis of Zr were excluded because of a lack of sufficient 
information provided by the analyst team rather than due 
to the use of effects that could not be converted to  Zr. 
Regardless, as we describe below, we generated a second 
set of standardized effects (predicted values) that could 
(in principle) be derived from any explanatory model 
produced by these data.

Besides Zr, which describes the strength of a relation-
ship based on the amount of variation in a dependent 
variable explained by variation in an independent vari-
able, we also examined differences in the shape of the 
relationship between the independent and dependent 
variables. To accomplish this, we derived a point esti-
mate (out-of-sample predicted value) for the dependent 
variable of interest for each of three values of our primary 
independent variable. We originally described these three 
values as associated with the 25th percentile, median, 
and 75th percentile of the independent variable and any 
covariates.

Fig. 1 Schematic of research process showing recruited analyst and reviewer contributions in orange and core team contributions in blue. 
Items that are crossed out were preregistered but could not be conducted. Items with a greyed background were added as exploratory analyses 
after preregistration
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Preregistration Deviation:

The original description of the out-of-sample specifications did 
not account for the facts that (a) some variables are not distributed 
in a way that allowed division in percentiles and that (b) variables could 
be either positively or negatively correlated with the dependent variable. 
We provide a more thorough description here:

We derived three point-estimates (out-of-sample predicted values) 
for the dependent variable of interest; one for each of three values of our 
primary independent variable that we specified. We also specified values 
for all other variables that could have been included as independent 
variables in analysts’ models so that we could derive the predicted values 
from a fully specified version of any model produced by analysts. For all 
potential independent variables, we selected three values or categories. 
Of the three we selected, one was associated with small, one with inter-
mediate, and one with large values of one typical dependent variable 
(day 14 chick weight for the blue tit data and total number of seedlings 
for the Eucalyptus data; analysts could select other variables as their 
dependent variable, but the others typically correlated with the two 
identified here). For continuous variables, this means we identified 
the 25th percentile, median, and 75th percentile and, if the slope 
of the linear relationship between this variable and the typical depend-
ent variable was positive, we left the quartiles ordered as is. If, instead, 
the slope was negative, we reversed the order of the independent 
variable quartiles so that the ‘lower’ quartile value was the one associated 
with the lower value for the dependent variable. In the case of cat-
egorical variables, we identified categories associated with the 25th 
percentile, median, and 75th percentile values of the typical dependent 
variable after averaging the values for each category. However, for some 
continuous and categorical predictors, we also made selections based 
on the principle of internal consistency between certain related variables, 
and we fixed a few categorical variables as identical across all three levels 
where doing so would simplify the modelling process (specification 
tables available: blue tit: https:// osf. io/ 86akx; Eucalyptus: https:// osf. io/ 
jh7g5).

We used the 25th and 75th percentiles rather than 
minimum and maximum values to reduce the chance of 
occupying unrealistic parameter space. We planned to 
derive these predicted values from the model information 
provided by the individual analysts. All values (predic-
tions) were first transformed to the original scale along 
with their standard errors ( SE ); we used the delta method 
[111] for the transformation of SE . We used the square of 
the SE associated with predicted values as the sampling 
variance in the meta-analyses described below, and we 
planned to analyze these predicted values in exactly the 
same ways as we analyzed Zr in the following analyses.

Preregistration Deviation:

1. Standardizing blue tit out-of-sample predictions (yi)

Because analysts of blue tit data chose different dependent variables 
on different scales, after transforming out-of-sample values to the origi-
nal scales, we standardized all values as z scores (‘standard scores’) to put 
all dependent variables on the same scale and make them comparable. 
This involved taking each relevant value on the original scale (whether 
a predicted point estimate or a SE associated with that estimate) and sub-
tracting the value in question from the mean value of that dependent 
variable derived from the full dataset and then dividing this difference 
by the standard deviation, SD , corresponding to the mean from the full 
dataset (Supplementary Material B, Equation B.1).

Note that we were unable to standardise some analyst-constructed 
variables, so these analyses were excluded from the final out-of-sample 
estimates meta-analysis, see Supplementary Material B, section B.1.2.1 for 
details and explanation.

2. Log-transforming Eucalyptus out-of-sample predictions yi

All analyses of the Eucalyptus data chose dependent variables that were 
on the same scale, that is, Eucalyptus seedling counts. Although analysts 
may have used different size-classes of Eucalyptus seedlings for their 
dependent variable, we considered these choices to be akin to sub-
setting, rather than as different response variables, since changing 
the size-class of the dependent variable ultimately results in observations 
being omitted or included. Consequently, we did not standardise Euca-
lyptus out-of-sample predictions.

We were unable to fit quasi-Poisson or Poisson meta-regressions, 
as desired [79], because available meta-analysis packages (e.g. meta-
for:: and metainc::) do not provide implementation for outcomes 
as estimates-only, methods are only provided for outcomes as ratios 
or rate-differences between two groups. Consequently, we log-trans-
formed the out-of-sample predictions for the Eucalyptus data and use 
the mean estimate for each prediction scenario as the dependent vari-
able in our meta-analysis with the associated SE as the sampling variance 
in the meta-analysis  [74, 75]. Table2.

We plotted individual effect size estimates (Zr) and 
predicted values of the dependent variable (yi) and their 
corresponding 95% confidence / credible intervals in for-
est plots to allow visualization of the range and precision 
of effect size and predicted values. Further, we included 
these estimates in random effects meta-analyses  [14, 43] 
using the metafor package in R  [87, 114]:

where  yi  is the predicted value for the dependent vari-
able at the 25th percentile, median, or 75th percentile of 
the independent variables. The individual Zr  effect sizes 
were weighted with the inverse of sampling variance 
for  Zr. The individual predicted values for dependent 
variable (yi) were weighted by the inverse of the associ-
ated  SE2 (original registration omitted “inverse of the” in 
error). These analyses provided an average Zr score ( Zr ) 
or an average yi  (yi ) with corresponding 95% confidence 
interval and allowed us to estimate two heterogeneity 
indices, τ2  and  I2. The former, τ2 , is the absolute meas-
ure of heterogeneity or the between-study variance (in 
our case, between-effect variance) whereas I2 is a relative 
measure of heterogeneity. We obtained the estimate of 
relative heterogeneity (I2) by dividing the between-effect 
variance by the sum of between-effect and within-effect 
variance (sampling error variance). I2 is thus, in a stand-
ard meta-analysis, the proportion of variance that is due 
to heterogeneity as opposed to sampling error. When cal-
culating I2, within-study variance is amalgamated across 
studies to create a “typical” within-study variance which 
serves as the sampling error variance [14, 43]. Our goal 

Zr ∼ 1+
(

1|Effect ID
)

yi ∼ 1+
(

1|Effect ID
)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Page 11 of 36Gould et al. BMC Biology           (2025) 23:35  

here was to visualize and quantify the degree of variation 
among analyses in effect size estimates  [72]. We did not 
test for statistical significance.

Additional explanation:

Our use of I2 to quantify heterogeneity violates an important assump-
tion, but this violation does not invalidate our use of I2 as a metric 
of how much heterogeneity can derive from analytical decisions. In 
standard meta-analysis, the statistic I2 quantifies the proportion of vari-
ance that is greater than we would expect if differences among estimates 
were due to sampling error alone  [88]. However, it is clear that this 
interpretation does not apply to our value of I2 because I2 assumes 
that each estimate is based on an independent sample (although these 
analyses can account for non-independence via hierarchical modelling), 
whereas all our effects were derived from largely or entirely overlapping 
subsets of the same dataset. Despite this, we believe that I2 remains 
a useful statistic for our purposes. This is because, in calculating I2, we 
are still setting a benchmark of expected variation due to sampling error 
based on the variance associated with each separate effect size estimate, 
and we are assessing how much (if at all) the variability among our effect 
sizes exceeds what would be expected had our effect sizes been based 
on independent data. In other words, our estimates can tell us how much 
proportional heterogeneity is possible from analytical decisions alone 
when sample sizes (and therefore meta-analytic within-estimate vari-
ance) are similar to the ones in our analyses. Among other implications, 
our violation of the independent sample assumption means that we 
(dramatically) over-estimate the variance expected due to sampling 
error, and because I2 is a proportional estimate, we thus underestimate 
the actual proportion of variance due to differences among analyses 
other than sampling error. However, correcting this underestimation 
would create a trivial value since we designed the study so that much 
of the variance would derive from analytic decisions as opposed to dif-
ferences in sampled data. Instead, retaining the I2 value as typically 
calculated provides a useful comparison to I2 values from typical meta-
analyses.

Interpretation of τ2 also differs somewhat from traditional meta-analysis, 
and we discuss this further in the Results.

Finally, we assessed the extent to which deviations 
from the meta-analytic mean by individual effect sizes 
(Zr) or the predicted values of the dependent variable (yi) 
were explained by the peer rating of each analysis team’s 
method section, by a measurement of the distinctiveness 
of the set of predictor variables included in each analysis, 
and by the choice of whether or not to include random 
effects in the model. The deviation score, which served 
as the dependent variable in these analyses, is the abso-
lute value of the difference between the meta-analytic 
mean   Zr (or yi ) and the individual  Zr  (or  yi) estimate 
for each analysis. We used the Box-Cox transformation 
on the absolute values of deviation scores to achieve an 
approximately normal distribution [28, 29]. We described 
variation in this dependent variable with both a series 
of univariate analyses and a multivariate analysis. All 
these analyses were general linear (mixed) models. These 
analyses were secondary to our estimation of variation in 
effect sizes described above. We wished to quantify rela-
tionships among variables, but we had no a priori expec-
tation of effect size and made no dichotomous decisions 
about statistical significance.

When examining the extent to which reviewer ratings 
(on a scale from 0 to 100) explained deviation from the 
average effect (or predicted value), each analysis had been 
rated by multiple peer reviewers, so for each reviewer 
score to be included, we include each deviation score 
in the analysis multiple times. To account for the non-
independence of multiple ratings of the same analysis, we 
planned to include analysis identity as a random effect in 
our general linear mixed model in the  lme4  package in 
R   [11, 87]. To account for potential differences among 
reviewers in their scoring of analyses, we also planned to 
include reviewer identity as a random effect:

where   DeviationFromMeanj  is the deviation from 
the meta-analytic mean for the  jth analysis,  Reviewer 
 IDi  is the random intercept assigned to each  i  reviewer, 
and  Effect  IDj  is the random intercept assigned to 
each j analysis, both of which are assumed to be normally 
distributed with a mean of 0 and a variance of σ2. Abso-
lute deviation scores were Box-Cox transformed using 
the  step_box_cox()  function from the  timetk  package in 
R [24, 87].

Additional explanation:

In our meta-analyses based on Box-Cox transformed deviation scores, 
we leave these deviation scores unweighted. This is consistent with our 
registration, which did not mention weighting these scores. However, 
the fact that we did not mention weighting the scores was actually 
an error: we had intended to weight them, as is standard in meta-
analysis, using the inverse variance of the Box-Cox transformed deviation 
scores Supplementary Material C, equation C.1. Unfortunately, when we 
did conduct the weighted analyses, they produced results in which some 
weighted estimates differed radically from the unweighted estimate 
because the weights were invalid. Such invalid weights can sometimes 
occur when the variance (upon which the weights depend) is partly 
a function of the effect size, as in our Box-Cox transformed deviation 
scores  [73]. In the case of the Eucalyptus analyses, the most extreme 
outlier was weighted much more heavily (by close to two orders of mag-
nitude) than any other effect sizes because the effect size was, itself, 
so high. Therefore, we made the decision to avoid weighting by inverse 
variance in all analyses of the Box-Cox transformed deviation scores. 
This was further justified because (a) most analyses have at least some 
moderately unreliable weights, and (b) the sample sizes were mostly very 
similar to each other across submitted analyses, and so meta-analytic 
weights are not particularly important here [19]. We systematically 
investigated the impact of different weighting schemes and random 
effects on model convergence and results, see Supplementary Material 
C, section C.8 for more details.

DeviationScorej = BoxCox
(

DeviationFromMeanj
)

DeviationScoreij ∼ Ratingij + ReviewerIDi + EffectIDj

ReviewerIDi ∼ N (0, σ 2
i )

EffectID ∼ N (0, σ 2
j )
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We conducted a similar analysis with the four cat-
egories of reviewer ratings ((1) deeply flawed and 
unpublishable, (2) publishable with major revision, (3) 
publishable with minor revision, (4) publishable as is) 
set as ordinal predictors numbered as shown here. As 
with the analyses above, we planned for these analy-
ses to also include random effects of analysis identity 
and reviewer identity. Both of these analyses (1: 1–100 
ratings as the fixed effect, 2: categorical ratings as 
the fixed effects) were planned to be conducted eight 
times for each dataset. Each of the four responses 
(Zr,   y25,   y50,   y75) were to be compared once to the ini-
tial ratings provided by the peer reviewers, and again 
based on the revised ratings provided by the peer 
reviewers.

Preregistration deviation:

1. We planned to include random effects of both analysis identity 
and reviewer identity in these models comparing reviewer ratings 
with deviation scores. However, after we received the analyses, we 
discovered that a subset of analyst teams had either conducted multiple 
analyses and/or identified multiple effects per analysis as answering 
the target question. We therefore faced an even more complex potential 
set of random effects. We decided that including Team ID and Effect ID 
along with Reviewer ID as random effects in the same model would 
almost certainly lead to model fit problems, and so we started with sim-
pler models including just Effect ID and Reviewer ID. However, even 
with this simpler structure, our dataset was sparse, with reviewers rating 
a small number of analyses, resulting in models with singular fit (Sup-
plementary Material C, section C.2). Removing one of the random effects 
was necessary for the models to converge. For both models of deviation 
from the meta-analytic mean explained by categorical or continuous 
reviewer ratings, we removed the random effect of Effect ID, leaving 
Reviewer ID as the only random effect.

2. We conducted analyses only with the final peer ratings after the oppor-
tunity for revision, not with the initial ratings. This was because when we 
recorded the final ratings, the initial ratings were over-written, therefore 
we did not have access to those initial values.

The next set of univariate analyses sought to explain 
deviations from the mean effects based on a measure of 
the distinctiveness of the set of variables included in each 
analysis. As a ‘distinctiveness’ score, we used Sorensen’s 
Similarity Index (an index typically used to compare 
species composition across sites), treating variables as 
species and individual analyses as sites. To generate an 
individual Sorensen’s value for each analysis required 
calculating the pairwise Sorensen’s value for all pairs of 
analyses (of the same dataset), and then taking the aver-
age across these Sorensen’s values for each analysis. We 
calculated the Sorensen’s index values using the  beta-
part package [10] in R:

βSorensen =
b+ c

2a+ b+ c

where  a  is the number of variables common to both 
analyses,  b  is the number of variables that occur in the 
first analysis but not in the second and c is the number of 
variables that occur in the second analysis. We then used 
the per-model average Sorensen’s index value as an inde-
pendent variable to predict the deviation score in a gen-
eral linear model, and included no random effect since 
each analysis is included only once, in R [87]:

Additional explanation:

When we planned this analysis, we anticipated that analysts would 
identify a single primary effect from each model, so that each model 
would appear in the analysis only once. Our expectation was incorrect 
because some analysts identified >1 effect per analysis, but we still chose 
to specify our model as registered and not use a random effect. This 
is because most models produced only one effect and so we expected 
that specifying a random effect to account for the few cases where >1 
effect was included for a given model would prevent model conver-
gence.

Note that this analysis contrasts with the analyses in which we used 
reviewer ratings as predictors because in the analyses with reviewer rat-
ings, each effect appeared in the analysis approximately four times due 
to multiple reviews of each analysis, and so it was much more important 
to account for that variance through a random effect.

Next, we assessed the relationship between the inclu-
sion of random effects in the analysis and the deviation 
from the mean effect size. We anticipated that most ana-
lysts would use random effects in a mixed model frame-
work, but if we were wrong, we wanted to evaluate the 
differences in outcomes when using random effects ver-
sus not using random effects. Thus, if there were at least 
5 analyses that did and 5 analyses that did not include 
random effects, we would add a binary predictor variable 
“random effects included (yes/no)” to our set of univari-
ate analyses and would add this predictor variable to our 
multivariate model described below. This standard was 
only met for the Eucalyptus analyses, and so we only 
examined inclusion of random effects as a predictor vari-
able in meta-analysis of this set to analyses.

Finally, we conducted a multivariate analysis with the 
five predictors described above (peer ratings 0–100 and 
peer ratings of publishability 1–4; both original and 
revised and Sorensen’s index, plus a sixth for Eucalyp-
tus, presence / absence of random effects) with random 
effects of analysis identity and reviewer identity in the 
lme4 package in R [11, 87]. We had stated here in the text 
that we would use only the revised (final) peer ratings in 
this analysis, so the absence of the initial ratings is not a 
deviation from our plan:

DeviationScorej ∼ βSorensenj

DeviationScorej = BoxCox
(

DeviationFromMeanj
)
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We conducted all the analyses described above eight 
times; for each of the four responses (Zr,  y25,  y50,  y75) one 
time for each of the two datasets.

We have publicly archived all relevant data, code, and 
materials on the Open Science Framework (https:// osf. io/ 
mn5aj/). Archived data includes the original datasets dis-
tributed to all analysts, any edited versions of the data ana-
lyzed by individual groups, and the data we analyzed with 
our meta-analyses, which include the effect sizes derived 
from separate analyses, the statistics describing variation in 
model structure among analyst groups, and the anonymized 
answers to our surveys of analysts and peer reviewers. Simi-
larly, we have archived both the analysis code used for each 
individual analysis (where available) and the code from our 
meta-analyses. We have also archived copies of our survey 
instruments from analysts and peer reviewers.

Our rules for excluding data from our study were as 
follows. We excluded from our synthesis any individual 
analysis submitted after we had completed peer review 
or those unaccompanied by analysis files that allow us 
to understand what the analysts did. We also excluded 
any individual analysis that did not produce an out-
come that could be interpreted as an answer to our 
primary question (as posed above) for the respective 
dataset. For instance, this means that in the case of the 
data on blue tit chick growth, we excluded any analysis 
that did not include something that can be interpreted 
as growth or size as a dependent (response) variable, 
and in the case of the Eucalyptus establishment data, 
we excluded any analysis that did not include a meas-
ure of grass cover among the independent (predictor) 
variables. Also, as described above, any analysis that 
could not produce an effect that could be converted to 
a signed Zr was excluded from analyses of Zr.

Preregistration Deviation:

Some analysts had difficulty implementing our instructions to derive 
the out-of-sample predictions, and in some cases (especially for the Euca-
lyptus data), they submitted predictions with implausibly extreme values. 
We believed these values were incorrect and thus made the conserva-
tive decision to exclude out-of-sample predictions where the estimates 
were > 3 standard deviations from the mean value from the full dataset 
provided to teams for analysis.

DeviationScoreij ∼ RatingContinuousij + RatingCategoricalij

+ βSorensenj + ReviewerIDi + Effect IDj

ReviewerIDi ∼ N (0, σ 2
i )

EffectIDj ∼ N (0, σ 2
j )

Additional explanation: Best practices in many-analysts research

After we initiated our project, a paper was published outlining best 
practices in many-analysts studies [1]. Although we did not have 
access to this document when we implemented our project, our study 
complies with these practices nearly completely. The one exception 
is that although we requested analysis code from analysts, we did 
not require submission of code.

Additional explanation: unregistered analyses

1. Evaluating model fit.

We evaluated all fitted models using 
the performance::performance() function from the performance pack-
age [60] and the glance() function from the broom.mixed package 
[13]. For all models, we calculated the square root of the residual 
variance (Sigma) and the root mean squared error (RMSE). 
For GLMMs performance::performance() calculates the marginal and con-
ditional  R2values as well as the contribution of random effects (ICC), 
based on [76]. The conditional  R2 accounts for both the fixed and random 
effects, while the marginal  R2 considers only the variance of the fixed 
effects. The contribution of random effects is obtained by subtracting 
the marginal  R2 from the conditional  R2.

2. Exploring outliers and analysis quality.

After seeing the forest plots of Zr values and noticing the existence 
of a small number of extreme outliers, especially from the Eucalyp-
tus analyses, we wanted to understand the degree to which our het-
erogeneity estimates were influenced by these outliers. To explore this 
question, we removed the highest two and lowest two values of Zr in 
each dataset and re-calculated our heterogeneity estimates.

To help understand the possible role of the quality of analyses in driv-
ing the heterogeneity we observed among estimates of Zr, we created 
forest plots and recalculated our heterogeneity estimates after remov-
ing all effects from analysis teams that had received at least one rating 
of “deeply flawed and unpublishable” and then again after removing 
all effects from analysis teams with at least one rating of either “deeply 
flawed and unpublishable” or “publishable with major revisions”. We 
also used self-identified levels of statistical expertise to examine hetero-
geneity when we retained analyses only from analysis teams that con-
tained at least one member who rated themselves as “highly proficient” 
or “expert” (rather than “novice” or “moderately proficient”) in conducting 
statistical analyses in their research area in our intake survey.

Additionally, to assess potential impacts of highly collinear predictor 
variables on estimates of Zr in blue tit analyses, we created forest plots 
(Supplementary Material B, Figure B.5) and recalculated our heterogene-
ity estimates after we removed analyses that contained the brood count 
after manipulation and the highly correlated (correlation of 0.89, Sup-
plementary Material D, Figure D.2) brood count at day 14. This removal 
included the one effect based on a model that contained both these 
variables and a third highly correlated variable, the estimate of number 
of chicks fledged (the only model that included the estimate of number 
of chicks fledged). We did not conduct a similar analysis for the Eucalyp-
tus dataset because there were no variables highly collinear with the pri-
mary predictors (grass cover variables) in that dataset (Supplementary 
Material D, Figure D.1).

3. Exploring possible impacts of lower quality estimates of degrees 
of freedom.

Our meta-analyses of variation in Zr required variance estimates derived 
from estimates of the degrees of freedom in original analyses from which 
Zr estimates were derived. While processing the estimates of degrees 
of freedom submitted by analysts, we identified a subset of these 
estimates in which we had lower confidence because two or more 
effects from the same analysis were submitted with identical degrees 
of freedom. We therefore conducted a second set of (more conservative) 
meta-analyses that excluded these Zr estimates with identical estimates 
of degrees of freedom and we present these analyses in the supplement.
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Step 6: Facilitated discussion and collaborative write‑up 
of manuscript
We planned for analysts and initiating authors to discuss 
the limitations, results, and implications of the study and 
collaborate on writing the final manuscript for review as 
a stage-2 Registered Report.

Preregistration deviation:

As described above, due to the large number of recruited analysts 
and reviewers and the anticipated challenges of receiving and integrat-
ing feedback from so many authors, we limited analyst and reviewer 
participation in the production of the final manuscript to an invitation 
to call attention to serious problems with the manuscript draft.

We built an R package,  ManyEcoEvo::  to conduct 
the analyses described in this study   [38], which can be 
downloaded from   https:// github. com/ egoul do/ ManyE 
coEvo/ to reproduce our analyses or replicate the analy-
ses described here using alternate datasets. Data cleaning 
and preparation of analysis data, as well as the analysis, is 
conducted in R  [87] reproducibly using the targets pack-
age   ([57]). This data and analysis pipeline is stored in 
the ManyEcoEvo:: package repository and its outputs are 
made available to users of the package when the library is 
loaded.

The full manuscript, including further analysis and 
presentation of results is written in Quarto   [2]. The 
source code to reproduce the manuscript is hosted at 
https:// github. com/ egoul do/ ManyA nalys ts/ [39], and the 
rendered version of the source code may be viewed at 
https:// egoul do. github. io/ ManyA nalys ts/. All R packages 
and their versions used in the production of the manu-
script are listed in Table 7 at the end of this paper.

Results
Summary statistics
In total, 173 analyst teams, comprising 246 analysts, 
contributed 182 usable analyses (compatible with our 
meta-analyses and provided with all information needed 
for inclusion) of the two datasets examined in this study 
which yielded 215 effects. Analysts produced 134 distinct 
effects that met our criteria for inclusion in at least one of 
our meta-analyses for the blue tit dataset. Analysts pro-
duced 81 distinct effects meeting our criteria for inclu-
sion for the  Eucalyptus  dataset. Excluded analyses and 
effects either did not answer our specified biological 
questions, were submitted with insufficient information 
for inclusion in our meta-analyses, or were incompatible 
with production of our effect size(s). We expected cases 
of this final scenario (incompatible analyses), for instance 
we cannot extract a Zr from random forest models, which 
is why we analyzed two distinct types of effects, Zr  and 
out-of-sample predictions. Some effects only provided 
sufficient information for a subset of analyses and were 

only included in that subset. For both datasets, most sub-
mitted analyses incorporated mixed effects. Submitted 
analyses of the blue tit dataset typically specified normal 
error and analyses of the  Eucalyptus  dataset typically 
specified a non-normal error distribution (Supplemen-
tary Material A, Table A.1).

For both datasets, the composition of models var-
ied substantially in regards to the number of fixed and 
random effects, interaction terms, and the number of 
data points used, and these patterns differed somewhat 
between the blue tit and  Eucalyptus  analyses (See  Sup-
plementary Material A Table A. 2). Focusing on the mod-
els included in the Zr analyses (because this is the larger 
sample), blue tit models included a similar number of 
fixed effects on average (mean 5.2 ± 2.92 SD , range 1 to 
19) as Eucalyptus models (mean 5.01 ± 3.83 SD , range 1 
to 13), but the standard deviation in the number of fixed 
effects was somewhat larger in the  Eucalyptus  mod-
els. The average number of interaction terms was much 
larger for the blue tit models (mean 0.44  ±  1.11  SD , 
range 0 to 10) than for the  Eucalyptus  models (mean 
0.16 ± 0.65 SD , range 0 to 5), but still under 0.5 for both, 
indicating that most models did not contain interac-
tion terms. Blue tit models also contained more random 
effects (mean 3.53 ± 2.08 SD , range 0 to 10) than Eucalyp-
tus models (mean 1.41 ± 1.09 SD , range 0 to 4). The max-
imum possible sample size in the blue tit dataset (3720 
nestlings) was an order of magnitude larger than the 
maximum possible in the Eucalyptus dataset (351 plots), 
and the means and standard deviations of the sample 
size used to derive the effects eligible for our study were 
also an order of magnitude greater for the blue tit data-
set (mean 2611.09 ± 937.48 SD , range 76 to 76) relative to 
the Eucalyptus models (mean 298.43 ± 106.25 SD , range 
18 to 351). However, the standard deviation in sample 
size from the Eucalyptus models was heavily influenced 
by a few cases of dramatic sub-setting (described below). 
Approximately three quarters of Eucalyptus models used 
sample sizes within 3%  of the maximum. In contrast, 
fewer than 20% of blue tit models relied on sample sizes 
within 3%  of the maximum, and approximately 50%  of 
blue tit models relied on sample sizes 29% or more below 
the maximum.

Analysts provided qualitative descriptions of the con-
clusions of their analyses. Each analysis team provided 
one conclusion per dataset. These conclusions could take 
into account the results of any formal analyses completed 
by the team as well as exploratory and visual analyses of 
the data. Here we summarize all qualitative responses, 
regardless of whether we had sufficient information to 
use the corresponding model results in our quantitative 
analyses below. We classified these conclusions into the 
categories summarized below (Table 1):
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• Mixed: some evidence supporting a positive effect, 
some evidence supporting a negative effect

• Conclusive negative: negative relationship described 
without caveat

• Qualified negative: negative relationship but only 
in certain circumstances or where analysts express 
uncertainty in their result

• Conclusive none: analysts interpret the results as con-
clusive of no effect

• Qualified none: analysts describe finding no evidence 
of a relationship but they describe the potential for 
an undetected effect

• Qualified positive: positive relationship described 
but only in certain circumstances or where analysts 
express uncertainty in their result

• Conclusive positive: positive relationship described 
without caveat

For the blue tit dataset, most analysts concluded that 
there was negative relationship between measures of sibling 
competition and nestling growth, though half the teams 
expressed qualifications or described effects as mixed or 
absent. No analysts concluded that there was a positive 
relationship even though some individual effect sizes were 
positive, apparently because all analysts who produced 
effects indicating positive relationships also produced 
effects indicating negative relationships and therefore 
described their results as qualified, mixed, or absent. For 
the Eucalyptus dataset, there was a broader spread of con-
clusions with at least one analyst team providing conclu-
sions consistent with each conclusion category. The most 
common conclusion for the  Eucalyptus  dataset was that 
there was no relationship between grass cover and Eucalyp-
tus  recruitment (either conclusive or qualified description 
of no relationship), but more than half the teams concluded 
that there were effects; negative, positive, or mixed.

Distribution of effects
Effect sizes (Zr)
Although the majority (118 of 131) of the usable Zr effects 
from the blue tit dataset found nestling growth decreased 
with sibling competition, and the meta-analytic mean Z
r  (Fisher’s transformation of the correlation coeffi-
cient) was convincingly negative (−0.35  ±  0.06 95%CI), 
there was substantial variability in the strength and the 
direction of this effect.  Zr  ranged from −1.55 to 0.38, 
and approximately continuously from −0.93 to 0.19 
(Fig. 2a and Table 4), and of the 118 effects with negative 
slopes, 93 had confidence intervals excluding 0. Of the 13 
with positive slopes indicating increased nestling growth 
in the presence of more siblings, 2 had confidence inter-
vals excluding zero (Fig. 2a).

Meta-analysis of the  Eucalyptus  dataset also showed 
substantial variability in the strength of effects as measured 
by Zr, and unlike with the blue tits, a notable lack of consist-
ency in the direction of effects (Fig. 2b, Table 4). Zr ranged 
from −4.47 (Supplementary Material A, Figure A.2), indi-
cating a strong tendency for reduced Eucalyptus seedling 
success as grass cover increased, to 0.39, indicating the 
opposite. Although the range of reported effects skewed 
strongly negative, this was due to a small number of sub-
stantial outliers. Most values of  Zr  were relatively small 
with values <|0.2| and the meta-analytic mean effect size 
was close to zero (−0.09 ± 0.12 95%CI). Of the 79 effects, 
fifty-three had confidence intervals overlapping zero, 
approximately a quarter (fifteen) crossed the traditional 
threshold of statistical significance indicating a negative 
relationship between grass cover and seedling success, and 
eleven crossed the significance threshold indicating a posi-
tive relationship between grass cover and seedling success 
(Fig. 2b).

Out‑of‑sample predictions (yi)
As with the effect size Zr, we observed substantial variabil-
ity in the size of out-of-sample predictions derived from 
the analysts’ models. Blue tit predictions (Fig.  3a), which 
were z-score-standardized to accommodate the use of dif-
ferent response variables, always ranged far in excess of 
one standard deviation. In the  y25 scenario, model predic-
tions ranged from −1.84 to 0.42 (a range of 2.68 standard 
deviations), in the   y50  they ranged from −0.52 to 1.08 (a 
range of 1.63 standard deviations), and in the  y75 scenario 
they ranged from −0.03 to 1.59 (a range of 1.9 standard 
deviations). As should be expected given the existence of 
both negative and positive Zr values, all three out-of-sam-
ple scenarios produced both negative and positive predic-
tions, although as with the Zr values, there is a clear trend 
for scenarios with more siblings to be associated with 
smaller nestlings. This is supported by the meta-analytic 
means of these three sets of predictions which were −0.66 
(95%CI −0.82–0.5) for the   y25, 0.34 (95%CI 0.2–0.48) for 
the  y50, and 0.67 (95%CI 0.57–0.77) for the  y75.

Eucalyptus out-of-sample predictions also var-
ied substantially (Fig.  3b), but because they were not 
z-score-standardized and are instead on the original 
count scale, the types of interpretations we can make 
differ. The predicted  Eucalyptus  seedling counts per 
15 × 15 m plot for the   y25  scenario ranged from 0.04 
to 26.99, for the  y50 scenario ranged from 0.04 to 44.34, 
and for the  y75 scenario they ranged from 0.03 to 61.34. 
The meta-analytic mean predictions for these three sce-
narios were similar; 1.27 (95%CI 0.59–2.3) for the   y25, 
2.92 (95%CI 0.98–3.89) for the   y50, and 2.92 (95%CI 
1.59–4.9) for the  y75 scenarios respectively.
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Quantifying heterogeneity
Effect sizes (Zr)
We quantified both absolute ( τ 2 ) and relative (I2) hetero-
geneity resulting from analytical variation. Both meas-
ures suggest that substantial variability among effect sizes 
was attributable to the analytical decisions of analysts.

The total absolute level of variance beyond what would 
typically be expected due to sampling error, τ 2 (Table 2), 
among all usable blue tit effects was 0.08 and for Euca-
lyptus  effects was 0.27. This is similar to or exceeding 
the median value (0.105) of  τ 2  found across 31 recent 

meta-analyses  (calculated from the data in   [121]). The 
similarity of our observed values to values from meta-
analyses of different studies based on different data sug-
gests the potential for a large portion of heterogeneity to 
arise from analytical decisions. For further discussion of 
interpretation of τ 2  in our study, please consult discus-
sion of post hoc analyses below.

In our analyses,  I2  is a plausible index of how much 
more variability among effect sizes we have observed, 
as a proportion, than we would have observed if sam-
pling error were driving variability. We discuss our 

Table 1 Tallies of analysts’ qualitative answers to the research questions addressed by their analyses

Dataset Mixed Negative 
Conclusive

Negative 
Qualified

None Conclusive None Qualified Positive 
Qualified

Positive 
Conclusive

blue tit 5 37 27 4 1 0 0

Eucalyptus 8 6 12 19 12 4 2

Fig. 2 Forest plots of meta-analytic estimated standardized effect sizes (Zr, blue triangles) and their 95% confidence intervals for each effect 
size included in the meta-analysis model. A Blue tit analyses: Points where Zr are less than 0 indicate analyses that found a negative relationship 
between sibling number and nestling growth. B Eucalyptus analyses: Points where Zr are less than 0 indicate a negative relationship between grass 
cover and Eucalyptus seedling success. The meta-analytic mean effect size is denoted by a black circle and a dashed vertical line, with error bars 
also representing the 95% confidence interval. The solid black vertical line demarcates effect size of 0, indicating no relationship between the test 
variable and the response variable. Note that the Eucalyptus plot omits one extreme outlier with the value of −4.47 (Supplementary Material A, 
Figure A.2) in order to standardize the x-axes on these two panels
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interpretation of I2  further in the methods, but in short, 
it is a useful metric for comparison to values from pub-
lished meta-analyses and provides a plausible value 
for how much heterogeneity could arise in a normal 
meta-analysis with similar sample sizes due to analyti-
cal variability alone. In our study, total  I2  for the blue 
tit  Zr  estimates was extremely large, at 97.61%, as was 
the Eucalyptus estimate (98.59% Table 2).

Although the overall  I2  values were similar for 
both  Eucalyptus  and blue tit analyses, the relative com-
position of that heterogeneity differed. For both datasets, 
the majority of heterogeneity in Zr was driven by differ-
ences among effects as opposed to differences among 
teams, though this was more prominent for the Eucalyp-
tus dataset, where nearly all of the total heterogeneity was 
driven by differences among effects (91.7%) as opposed to 
differences among teams (6.89%) (Table 2).

Out‑of‑sample predictions (yi)
We observed substantial heterogeneity among out-of-
sample estimates, but the pattern differed somewhat 

from the  Zr  values (Table  3). Among the blue tit pre-
dictions,  I2  ranged from medium-high for the   y25  sce-
nario (68.54) to low (27.9) for the   y75  scenario. Among 
the Eucalyptus predictions, I2 values were uniformly high 
(>82%). For both datasets, most of the existing heteroge-
neity among predicted values was attributable to among-
team differences, with the exception of the   y50  analysis 
of the  Eucalyptus  dataset. We are limited in our inter-
pretation of  τ 2  for these estimates because, unlike for 
the Zr estimates, we have no benchmark for comparison 
with other meta-analyses.

Post hoc analysis: Exploring outlier characteristics 
and the effect of outlier removal on heterogeneity
Effect sizes (Zr)
The outlier Eucalyptus Zr values were striking and mer-
ited special examination. The three negative outliers had 
very low sample sizes that were based on either small 
subsets of the dataset or, in one case, extreme aggrega-
tion of data. The outliers associated with small subsets 
had sample sizes (n=  117, 90, 18) that were less than 

Fig. 3 Forest plot of meta-analytic estimated out-of-sample predictions. A Standardized (z-score) blue tit out-of-sample predictions, yi. B 
Response-scale (stem counts) Eucalyptus out-of-sample predictions. Triangles represent individual estimates. Circles represent the meta-analytic 
mean for each prediction scenario. Dark-blue points correspond to  y25 scenario, medium-blue points correspond to the  y50 scenario, while light 
blue points correspond to the  y75 scenario. Error bars are 95% confidence intervals. Note that, for the Eucalyptus analysis, outliers (observations more 
than 3 SD above the mean) have been removed prior to model fitting and do not appear on this figure. The x-axis is truncated to approximately 140, 
and thus some error bars are incomplete. See Supplementary Material B, Figure B.6 for full figure
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half of the total possible sample size of 351. The case of 
extreme aggregation involved averaging all values within 
each of the 351 sites in the dataset.

Surprisingly, both the largest and smallest effect sizes 
in the blue tit analyses (Fig. 2a) come from the same ana-
lyst (anonymous ID: “Adelong”), with identical models 
in terms of the explanatory variable structure, but with 
different response variables. However, the radical change 
in effect was primarily due to collinearity with covari-
ates. The primary predictor variable (brood count after 
manipulation) was accompanied by several collinear 
variables, including the highly collinear (correlation of 
0.89  Supplementary Material D, Figure  D.2) covariate 
(brood count at day 14) in both analyses. In the analy-
sis of nestling weight, brood count after manipulation 
showed a strong positive partial correlation with weight 
after controlling for brood count at day 14 and treatment 
category (increased, decreased, unmanipulated). In that 
same analysis, the most collinear covariate (the day 14 
count) had a negative partial correlation with weight. In 
the analysis with tarsus length as the response variable, 

these partial correlations were almost identical in abso-
lute magnitude, but reversed in sign and so brood count 
after manipulation was now the collinear predictor with 
the negative relationship. The two models were there-
fore very similar, but the two collinear predictors simply 
switched roles, presumably because a subtle difference in 
the distribution of weight and tarsus length data.

When we dropped the Eucalyptus outliers, I2 decreased 
from high (98.59 %), using [43] suggested benchmark, to 
between moderate and high (66.19 %, Table 2). However, 
more notably,  τ 2  dropped from 0.27 to 0.01, indicating 
that, once outliers were excluded, the observed variation 
in effects was similar to what we would expect if sam-
pling error were driving the differences among effects 
(since τ 2  is the variance beyond that driven by sampling 
error). The interpretation of this value of τ 2 in the context 
of our many-analyst study is somewhat different than a 
typical meta-analysis, however, since in our study (espe-
cially for  Eucalyptus, where most analyses used almost 
exactly the same data points), there is almost no role for 
sampling error in driving the observed differences among 

Table 2 Heterogeneity in the estimated effects Zr for meta-analyses of: the full dataset, as well as from post hoc analyses wherein 
analyses with outliers are removed, analyses with effects from analysis teams with at least one “unpublishable” rating are excluded, 
analyses receiving at least one “major revisions” rating or worse excluded, analyses from teams with at least one analyst self-rated as 
“highly proficient” or “expert” in statistical analysis are included, and (blue tit only) analyses that did not included the pair of highly 
collinear predictors together. τ 2Team is the absolute heterogeneity for the random effect Team. τ 2Effect ID is the absolute heterogeneity 
for the random effect Effect ID nested under Team. Effect ID is the unique identifier assigned to each individual statistical effect 
submitted by an analysis team. We nested Effect ID within analysis team identity (Team) because analysis teams often submitted >1 
statistical effect, either because they considered >1 model or because they derived >1 effect per model, especially when a model 
contained a factor with multiple levels that produced >1 contrast. τ 2Total is the total absolute heterogeneity. I2

Total is the proportional 
heterogeneity; the proportion of the variance among effects not attributable to sampling error, I2

Team is the subset of the proportional 
heterogeneity due to differences among Teams and I2

Team, EffectID is subset of the proportional heterogeneity attributable to among-
Effect ID differences

Dataset NObs τ2
Total τ2

Team τ2
EffectID I2

Total I2
Team I2

Team, EffectID

All Analyses

 Eucalyptus 79 0.27 0.02 0.25 98.59% 6.89% 91.70%

 blue tit 131 0.08 0.03 0.05 97.61% 36.71% 60.90%

Blue tit analyses containing highly collinear predictors removed

 blue tit 117 0.07 0.04 0.03 96.92% 58.18% 38.75%

All analyses, outliers removed

 Eucalyptus 75 0.01 0.00 0.01 66.19% 19.25% 46.94%

 blue tit 127 0.07 0.04 0.02 96.84% 64.63% 32.21%

Analyses receiving at least one “Unpublishable” rating removed

 Eucalyptus 55 0.01 0.01 0.01 79.74% 28.31% 51.43%

 blue tit 109 0.08 0.03 0.05 97.52% 35.68% 61.84%

Analyses receiving at least one “Unpublishable” and or “Major Revisions” rating removed

 Eucalyptus 13 0.03 0.03 0.00 88.91% 88.91% 0.00%

 blue tit 32 0.14 0.01 0.13 98.72% 5.17% 93.55%

Analyses from teams with highly proficient or expert data analysts

 Eucalyptus 34 0.58 0.02 0.56 99.41% 3.47% 95.94%

 blue tit 89 0.09 0.03 0.06 97.91% 31.43% 66.49%
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the estimates. Thus, rather than concluding that the vari-
ability we observed among estimates (after removing out-
liers) was due only to sampling error (because τ 2 became 
small: 10% of the median from [121], we instead conclude 
that the observed variability, which must be due to the 
divergent choices of analysts rather than sampling error, 
is approximately of the same magnitude as what we would 
have expected if, instead, sampling error, and not analyti-
cal heterogeneity, were at work. Conversely, dropping out-
liers from the set of blue tit effects did not meaningfully 
reduce  I2, and only modestly reduced τ2  (Table  2). Thus, 
effects at the extremes of the distribution were much 
stronger contributors to total heterogeneity for effects 
from analyses of the  Eucalyptus  than for the blue tit 
dataset.

Out‑of‑sample predictions (yi)
We did not conduct these post hoc analyses on the out-
of-sample predictions as the number of eligible effects 
was smaller and the pattern of outliers differed.

Post hoc analysis: Exploring the effect of removing 
analyses with poor peer ratings on heterogeneity
Effect sizes (Zr)
Removing poorly rated analyses had limited impact 
on the meta-analytic means (Supplementary Material 
B, Figure  B.3). For the  Eucalyptus  dataset, the meta-
analytic mean shifted from −0.09 to −0.02 when effects 
from analyses rated as unpublishable were removed, 
and to −0.04 when effects from analyses rated, at least 
once, as unpublishable or requiring major revisions were 
removed. Further, the confidence intervals for all of these 
means overlapped each of the other means (Table 4). We 

Table 3 Heterogeneity among the out-of-sample predictions yi for both blue tit and Eucalyptus datasets. τ2
Team is the absolute 

heterogeneity for the random effect Team. Τ2
EffectID is the absolute heterogeneity for the random effect Effect ID nested 

under Team. Effect ID is the unique identifier assigned to each individual statistical effect submitted by an analysis team. We 
nested Effect ID within analysis team identity (Team) because analysis teams often submitted >1 statistical effect, either because they 
considered >1 model or because they derived >1 effect per model, especially when a model contained a factor with multiple levels 
that produced >1 contrast. τ2

Total is the total absolute heterogeneity. I2
Total is the proportional heterogeneity; the proportion of the 

variance among effects not attributable to sampling error, I2
Team is the subset of the proportional heterogeneity due to differences 

among Teams and I2
Team,Effect ID is subset of the proportional heterogeneity attributable to among-Effect ID differences

Prediction Scenario NObs ΤTotal Τ2
Team Τ2

EffectID I2
Total I2

Team I2
Team,EffectID

blue tit

 y25 63 0.23 0.11 0.03 68.54% 53.43% 15.11%

 y50 60 0.23 0.06 0.00 50% 46.29% 3.71%

 y75 63 0.23 0.02 0.00 27.9% 27.89% 0.01%

Eucalyptus

 y25 38 5.75 1.48 0.68 86.93% 59.54% 27.39%

 y50 38 5.75 1.32 0.83 89.63% 55% 34.64%

 y75 38 5.75 1.03 0.41 80.19% 57.41% 22.78%

Table 4 Estimated mean value of the standardized correlation 
coefficient, Zr , along with its standard error and 95% confidence 
intervals. We re-computed the meta-analysis for different post 
hoc subsets of the data: All eligible effects, removal of effects 
from blue tit analyses that contained a pair of highly collinear 
predictor variables, removal of effects from analysis teams 
that received at least one peer rating of “deeply flawed and 
unpublishable”, removal of any effects from analysis teams that 
received at least one peer rating of either “deeply flawed and 
unpublishable” or “publishable with major revisions”, inclusion 
of only effects from analysis teams that included at least one 
member who rated themselves as “highly proficient” or “expert” at 
conducting statistical analyses in their research area

Dataset µ̂ SE[̂µ] 95% CI Statistic p

All analyses

 Eucalyptus −0.09 0.06 [−0.22,0.03] −1.47 0.14

 blue tit −0.35 0.03 [−0.41,−0.29] −11.02 <0.001

Blue tit analyses containing highly collinear predictors removed

 blue tit −0.36 0.03 [−0.42,−0.29] −10.97 <0.001

All analyses, outliers removed

 Eucalyptus −0.03 0.01 [−0.06,0.00] −2.23 0.026

 blue tit −0.36 0.03 [−0.42,−0.30] −11.48 <0.001

Analyses receiving at least one “Unpublishable” rating removed

 Eucalyptus −0.02 0.02 [−0.07,0.02] −1.15 0.3

 blue tit −0.36 0.03 [−0.43,−0.30] −10.82 <0.001

Analyses receiving at least one “Unpublishable” and or “Major Revisions” 
rating removed

 Eucalyptus −0.04 0.05 [−0.15,0.07] −0.77 0.4

 blue tit −0.37 0.07 [−0.51,−0.23] −5.34 <0.001

Analyses from teams with highly proficient or expert data analysts

 Eucalyptus −0.17 0.13 [−0.43,0.10] −1.24 0.2

 blue tit −0.36 0.04 [−0.44,−0.28] −8.93 <0.001
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saw similar patterns for the blue tit dataset, with only 
small shifts in the meta-analytic mean, and confidence 
intervals of all three means overlapping each other mean 
(Table  4). Refitting the meta-analysis with a fixed effect 
for categorical ratings also showed no indication of dif-
ferences in group meta-analytic means due to peer rat-
ings (Supplementary Material B, Figure B.1).

For the blue tit dataset, removing poorly rated analy-
ses led to only negligible changes in  I2

Total and relatively 
minor impacts on τ 2 . However, for the Eucalyptus data-
set, removing poorly rated analyses led to notable reduc-
tions in  I2

Total  and substantial reductions in  τ 2 . When 
including all analyses, the  Eucalyptus  I2

Total  was 98.59% 
and  τ 2  was 0.27, but eliminating analyses with ratings 
of “unpublishable” reduced  I2

Total  to 79.74% and  τ 2  to 
0.01, and removing also those analyses “needing major 
revisions” left  I2

Total  at 88.91% and τ 2  at 0.03 (Table  2). 
Additionally, the allocations of I2 to the team versus indi-
vidual effect were altered for both blue tit and Eucalyp-
tus  meta-analyses by removing poorly rated analyses, 
but in different ways. For blue tit meta-analysis, between 
a third and two-thirds of the total  I2 was attributable to 
among-team variance in most analyses until both analy-
ses rated “unpublishable” and analyses rated in need of 
“major revision” were eliminated, in which case almost all 
remaining heterogeneity was attributable to among-effect 
differences. In contrast, for Eucalyptus meta-analysis, the 
among-team component of  I2  was less than third until 
both analyses rated “unpublishable” and analyses rated in 
need of “major revision” were eliminated, in which case 
almost 90% of heterogeneity was attributable to differ-
ences among teams.

Out‑of‑sample predictions (yi)
We did not conduct these post hoc analyses on the out-
of-sample predictions as the number of eligible effects 
was smaller and our ability to interpret heterogeneity val-
ues for these analyses was limited

Post hoc analysis: exploring the effect of including only 
analyses conducted by analysis teams with at least one 
member self‑rated as “highly proficient” or “expert” 
in conducting statistical analyses in their research area
Effect sizes (Zr)
Including only analyses conducted by teams that con-
tained at least one member who rated themselves as 
“highly proficient” or “expert” in conducting the relevant 
statistical methods had negligible impacts on the meta-
analytic means (Table  4), the distribution of  Zr  effects 
(Supplementary Material B, Figure B.4), or heterogeneity 
estimates (Table 2), which remained extremely high.

Out‑of‑sample predictions (yi)
We did not conduct these post hoc analyses on the out-
of-sample predictions as the number of eligible effects 
was smaller.

 Post hoc analysis: exploring the effect 
of excluding estimates of  Zr in which we had reduced 
confidence
As described in our addendum to the methods, we iden-
tified a subset of estimates of Zr in which we had less con-
fidence because of features of the submitted degrees of 
freedom. Excluding these effects in which we had lower 
confidence had minimal impact on the meta-analytic 
mean and the estimates of total  I2  and τ 2  for both blue 
tit and  Eucalyptus  meta-analyses, regardless of whether 
outliers were also excluded (Supplementary Material B, 
Table B. 1).

Post hoc analysis: exploring the effect of excluding effects 
from blue tit models that contained two highly collinear 
predictors
Effect sizes (Zr)
Excluding effects from blue tit models that contained the 
two highly collinear predictors (brood count after manip-
ulation and brood count at day 14) had negligible impacts 
on the meta-analytic means (Table  4), the distribution 
of  Zr  effects (Supplementary Material B, Figure  B.5), or 
heterogeneity estimates (Table 2), which remained high.

Out‑of‑sample predictions
Inclusion of collinear predictors does not harm model 
prediction, and so we did not conduct these post hoc 
analyses.

Explaining variation in deviation scores
None of the pre-registered predictors explained substan-
tial variation in deviation among submitted statistical 
effects from the meta-analytic mean (Tables 5 and 6).

Deviation scores as explained by reviewer ratings
Effect sizes (Zr)
We obtained reviews from 153 reviewers who reviewed 
analyses for a mean of 3.27 (range 1–11) analysis teams. 
Analyses of the blue tit dataset received a total of 240 
reviews, each was reviewed by a mean of 3.87 ( SD 0.71, 
range 3–5) reviewers. Analyses of the  Eucalyptus  data-
set received a total of 178 reviews, each was reviewed 
by a mean of 4.24 ( SD 0.79, range 3–6) reviewers. We 
tested for inter-rater-reliability (IRR) to examine how 
similarly reviewers reviewed each analysis and found 
approximately no agreement among reviewers. When 
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considering continuous ratings, IRR was 0.01, and for 
categorical ratings, IRR was −0.14.

Many of the models of deviation as a function of peer 
ratings faced issues of failure to converge or singularity 
due to sparse design matrices with our pre-registered 
random effects (Effect  ID and Reviewer  ID) (see Sup-
plementary Material  C). These issues persisted after 
increasing the tolerance and changing the optimizer. For 
both Eucalyptus and blue tit datasets, models with con-
tinuous ratings as a predictor were singular when both 
pre-registered random effects were included.

When using both categorical and continuous ratings 
as predictors, only models converged and allowed 95% 
confidence intervals to be calculated when specifying 
Reviewer  ID as a random effect. The categorical ratings 
model had a   R2

C of 0.09 and a   R2
M of 0.01, the continu-

ous ratings model had a  R2
C of 0.09 and a  R2

M of 0.01 for 
the blue tit dataset and a   R2

C  of 0.12 and a   R2
M  of 0.01 

for the Eucalyptus dataset. Neither continuous nor cate-
gorical reviewer ratings of the analyses meaningfully pre-
dicted deviance from the meta-analytic mean (Table  6, 
Fig.  4). We re-ran the multi-level meta-analysis with a 
fixed effect for the categorical publishability ratings and 
found no difference in mean standardized effect sizes 
among publishability ratings (Supplementary Material B, 
Figure B.1).

Out‑of‑sample predictions (yi)
Some models of the influence of reviewer ratings on out-
of-sample predictions (yi) had issues with convergence 
and singularity of fit (see  Supplementary Material C, 
Table C.3) and those models that converged and were not 
singular showed no strong relationship (Supplementary 
Material C, Figure  C.2,  Supplementary Material C, Fig-
ure C.3), as with the Zr analyses.

Deviation scores as explained by the distinctiveness 
of variables in each analysis
Effect sizes (Zr)
We employed Sorensen’s index to calculate the distinc-
tiveness of the set of predictor variables used in each 
model (Fig.  5). The mean Sorensen’s score for blue tit 
analyses was 0.59 ( SD 0.1, range 0.43–0.86), and for Euca-
lyptus analyses was 0.69 ( SD 0.08, range 0.55–0.98).

We found no meaningful relationship between dis-
tinctiveness of variables selected and deviation from 
the meta-analytic mean (Table  6, Fig.  5) for either blue 
tit (mean 0.42, 95%CI −0.49,1.34) or  Eucalyptus  effects 
(mean 0.18, 95%CI −2.78,3.14).

Out‑of‑sample predictions (yi)
As with the  Zr  estimates, we did not observe any con-
vincing relationships between deviation scores of 

Fig. 4 Violin plot of Box-Cox transformed deviation from meta-analytic mean Zr as a function of categorical peer rating. Grey points for each rating 
group denote model-estimated marginal mean deviation, and error bars denote 95%CI of the estimate. A Blue tit dataset. BEucalyptus dataset
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out-of-sample predictions and Sorensen’s index values 
(see Supplementary Material C4.1).

Deviation scores as explained by the inclusion of random 
effects
Effect sizes (Zr)
There were only three blue tit analyses that did not 
include random effects, which is below the pre-registered 
threshold for fitting a model of the Box-Cox transformed 
deviation from the meta-analytic mean as a function of 
whether the analysis included random-effects. However, 
17 Eucalyptus analyses included only fixed effects, which 
crossed our pre-registered threshold. Consequently, 
we performed this analysis for the  Eucalyptus  dataset 
only. There was no relationship between random-effect 

inclusion and deviation from meta-analytic mean among 
the Eucalyptus analyses (Tables 6, Fig. 6).

Out‑of‑sample predictions (yi)
As with the Zr estimates, we did not examine the possi-
bility of a relationship between the inclusion of random 
effects and the deviation scores of the blue tit out-of-
sample predictions. When we examined the possibility 
of this relationship for the  Eucalyptus  effects, we found 
consistent evidence of somewhat higher Box-Cox-trans-
formed deviation values for models including a random 
effect, meaning the models including random effects 
averaged slightly higher deviation from the meta-analytic 
means (Supplementary Material C, Figure C.5).

Fig. 5 Fitted model of the Box-Cox-transformed deviation score (deviation in effect size from meta-analytic mean) as a function of the mean 
Sorensen’s index showing distinctiveness of the set of predictor variables. Grey ribbons on predicted values are 95% CI’s. A blue tit dataset. 
BEucalyptus dataset

Table 5 Summary metrics for registered models seeking to explain deviation (Box-Cox transformed absolute deviation scores) from 
Zr as a function of Sorensen’s Index, categorical peer ratings, and continuous peer ratings for blue tit and Eucalyptus analyses, and 
as a function of the presence or absence of random effects (in the analyst’s models) for Eucalyptus analyses. We report coefficient 
of determination,  R2, for our models including only fixed effects as predictors of deviation, and we report  R2

Conditional,  R
2

Marginal and 
the intra-class correlation (ICC) from our models that included both fixed and random effects. For all our models, we calculated the 
residual standard deviation σ and root mean squared error (RMSE)

Dataset NObs R2 R2
Conditional R2

Marginal ICC σ RMSE

Deviation explained by categorical ratings

 Eucalyptus 346 0.13 0.01 0.12 1.06 1.02

 blue tit 473 0.09 7.47 ×  10−3 0.08 0.5 0.48

Deviation explained by continuous ratings

 Eucalyptus 346 0.12 7.44 ×  10−3 0.11 1.06 1.03

 blue tit 473 0.09 3.44 ×  10−3 0.09 0.5 0.48

Deviation explained by Sorensen’s index

 Eucalyptus 79 1.84 ×  10−4 1.12 1.1

 blue tit 131 6.32 ×  10−3 0.51 0.51

Deviation explained by inclusion of random effects

 Eucalyptus 79 8.75 ×  10−8 1.12 1.1

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Page 23 of 36Gould et al. BMC Biology           (2025) 23:35  

Multivariate analysis effect size (Zr) and out‑of‑sample 
predictions (yi)
Like the univariate models, the multivariate models 
did a poor job of explaining deviations from the meta-
analytic mean. Because we pre-registered a multi-
variate model that contained collinear predictors that 
produce results which are not readily interpretable, we 
present these models in the supplement. We also had dif-
ficulty with convergence and singularity for multivariate 

models of out-of-sample (yi) result and had to adjust 
which random effects we included (Supplementary 
Material C, Table  C.8). However, no multivariate analy-
ses of  Eucalyptus  out-of-sample results avoided prob-
lems of convergence or singularity, no matter which 
random effects we included (Supplementary Material C, 
Table  C.8). We therefore present no multivariate  Euca-
lyptus  yi  models. We present parameter estimates from 
multivariate Zr models for both datasets (Supplementary 

Table 6 Parameter estimates from models of Box-Cox transformed deviation scores from Zr as a function of continuous and 
categorical peer ratings, Sorensen scores, and the inclusion of random effects. Standard errors ( SE ) and 95% confidence intervals (95% 
CI) are reported for all estimates, while t values, degrees of freedom and p-values are presented for fixed-effects. Note that positive 
parameter estimates mean that as the predictor variable increases, so does the absolute value of the deviation from the meta-analytic 
mean

Parameter Random effect Coefficient SE 95% CI t df p

Deviation explained by inclusion of random effects - Eucalyptus

  (Intercept) −2.53 0.27 [−3.06, −1.99] −9.31 77 <0.001

 Mixed model 0.00 0.31 [−0.60, 0.60] 0.00 77 >0.9

Deviation explained by Sorensen’s index - Eucalyptus

  (Intercept) −2.65 1.05 [−4.70, −0.60] −2.53 77 0.011

 Mean Sorensen’s index 0.18 1.51 [−2.78, 3.14] 0.12 77 >0.9

Deviation explained by Sorensen’s index - blue tit

  (Intercept) −1.53 0.28 [−2.08, −0.98] −5.42 129 <0.001

 Mean Sorensen’s index 0.42 0.47 [−0.49, 1.34] 0.91 129 0.4

Deviation explained by continuous ratings - Eucalyptus

  (Intercept) −2.23 0.23 [−2.69, −1.78] −9.65 342 <0.001

 RateAnalysis −0.004 0 [−0.011, 0] −1.44 342 0.15

 SD(Intercept) Reviewer ID 0.37 0.09 [ 0.24, 0.60]

 SD(Observations) Residual 1.06 0.04 [0.98, 1.15]

Deviation explained by continuous ratings - blue tit

  (Intercept) −1.16 0.11 [−1.37, −0.94] −10.60 469 <0.001

 RateAnalysis −0.002 0 [−0.004, 0] −1.22 469 0.2

 SD(Intercept) Reviewer ID 0.16 0.03 [0.10,0.24]

 SD(Observations) Residual 0.5 0.02 [0.46,0.53]

Deviation explained by categorical ratings - Eucalyptus

  (Intercept) −2.66 0.27 [−3.18, −2.13] −9.97 340 <0.001

 Publishable with major revision 0.29 0.29 [−0.27, 0.85] 1.02 340 0.3

 Publishable with minor revision 0.01 0.28 [−0.54, 0.56] 0.04 340 >0.9

 Publishable as is 0.05 0.31 [−0.55, 0.66] 0.17 340 0.9

 SD(Intercept) Reviewer ID 0.39 0.09 [ 0.25, 0.61]

 SD(Observations) Residual 1.06 0.04 [0.98, 1.15]

Deviation explained by categorical ratings - blue tit

  (Intercept) −1.11 0.11 [−1.33, −0.89] −9.91 467 <0.001

 Publishable with major revision −0.19 0.12 [−0.42, 0.04] −1.62 467 0.10

 Publishable with minor revision −0.19 0.12 [−0.42, 0.04] −1.65 467 0.10

 Publishable as is −0.13 0.13 [−0.39, 0.12] −1.02 467 0.3

SD(Intercept) Reviewer ID 0.15 0.04 [ 0.10, 0.24]

 SD(Observations) Residual 0.5 0.02 [0.46, 0.53]
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Material C, Table6,  Table7) and from  yi  models from 
the blue tit dataset (Supplementary Material C, 
Table C.10, Table C.9). We include interpretation of the 
results from these models in the supplement, but the 
results do not change the interpretations we present 
above based on the univariate analyses.

Discussion
When a large pool of ecologists and evolutionary biol-
ogists analyzed the same two datasets to answer the 
corresponding two research questions, they produced 
substantially heterogeneous sets of answers. Although 
the variability in analytical outcomes was high for both 
datasets, the patterns of this variability differed distinctly 
between them. For the blue tit dataset, there was nearly 
continuous variability across a wide range of Zr values. In 
contrast, for the Eucalyptus dataset, there was less vari-
ability across most of the range, but more striking outli-
ers at the tails. Among out-of-sample predictions, there 
was again almost continuous variation across a wide 
range (2 SD ) among blue tit estimates. For  Eucalyptus, 
out-of-sample predictions were also notably variable, 
with about half the predicted stem count values at <2 but 
the other half being much larger, and ranging to nearly 

40 stems per 15 m × 15 m plot. We investigated several 
hypotheses for drivers of this variability within datasets, 
but found little support for any of these. Most notably, 
even when we excluded analyses that had received one 
or more poor peer reviews, the heterogeneity in results 
largely persisted. Regardless of what drives the vari-
ability, the existence of such dramatically heterogeneous 
results when ecologists and evolutionary biologists seek 
to answer the same questions with the same data should 
trigger conversations about how ecologists and evolu-
tionary biologists analyze data and interpret the results 
of their own analyses and those of others in the literature 
[8, 16, 96, 100].

Our observation of substantial heterogeneity due 
to analytical decisions is consistent with a small ear-
lier study in ecology [103] and a growing body of work 
from the quantitative social sciences [15, 16, 23, 44, 92, 
96]. In these studies, when volunteers from the disci-
pline analyzed the same data, they produced a worryingly 
diverse set of answers to a pre-set question. This diversity 
included a wide range of effect sizes, and in most cases, 
even involved effects in opposite directions. Thus, our 
result should not be viewed as an anomalous outcome 
from two particular datasets, but instead as evidence 

Fig. 6 Violin plot of mean Box-Cox transformed deviation from meta-analytic mean as a function of random-effects inclusion in Eucalyptus analyses. 
White point for each group of analyses denotes model-estimated marginal mean deviation, and error bars denote 95% CI of the estimate
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from additional disciplines regarding the heterogene-
ity that can emerge from analyses of complex datasets 
to answer questions in probabilistic science. Not only is 
our major observation consistent with other studies, it 
is, itself, robust because it derived primarily from sim-
ple forest plots that we produced based on a small set of 
decisions that were mostly registered before data gather-
ing and which conform to widely accepted meta-analytic 
practices.

Unlike the strong pattern we observed in the for-
est plots, our other analyses, both registered and post 
hoc, produced either inconsistent patterns, weak pat-
terns, or the absence of patterns. Our registered analy-
ses found that deviations from the meta-analytic mean 
by individual effect sizes ( Zr ) or the predicted values of 
the dependent variable ( y ) were poorly explained by our 
hypothesized predictors: peer rating of each analysis 
team’s method section, a measurement of the distinc-
tiveness of the set of predictor variables included in each 
analysis, or whether the model included random effects. 
However, in our post hoc analyses, we found that drop-
ping analyses identified as unpublishable or in need of 
major revision by at least one reviewer modestly reduced 
the observed heterogeneity among the Zr outcomes, but 
only for Eucalyptus analyses, apparently because this led 
to the dropping of the major outlier. This limited role for 
peer review in explaining the variability in our results 
should be interpreted cautiously because the inter-rater 
reliability among peer reviewers was extremely low, and 
at least some analyses that appeared flawed to us were 
not marked as flawed by reviewers. Thus, it seems that 
the peer reviews we received were of mixed quality, pos-
sibly due to lack of expertise or lack of care on the part 
of some reviewers. However, the hypothesis that poor 
quality analyses drove a substantial portion of the hetero-
geneity we observed was also contradicted by our obser-
vation that analysts’ self-declared statistical expertise 
appeared unrelated to heterogeneity. When we retained 
only analyses from teams including at least one member 
with high self-declared levels of expertise, heterogeneity 
among effect sizes remained high. Thus, our results sug-
gest lack of statistical expertise is not the primary factor 
responsible for the heterogeneity we observed, although 
further work is merited before rejecting a role for statis-
tical expertise. Besides variability in expertise, it is also 
possible that the volunteer analysts varied in the effort 
they invested, and low effort presumably drove at least 
some heterogeneity in results. However, analysts often 
submitted thoughtful and extensive code, tables, fig-
ures, and textual explanation and interpretations, which 
is evidence of substantial investment. Further, we are 

confident that low effort alone is an insufficient expla-
nation for the heterogeneity we observed because we 
have worked with these datasets ourselves, and we know 
from experience that there are countless plausible mod-
elling alternatives that can produce a diversity of effects. 
Additionally, heterogeneity in analytical outcomes dif-
fered notably between datasets, and there is no reason 
to expect that one set of analysts took this project less 
seriously than the other. Returning to our exploratory 
analyses, not surprisingly, simply dropping outlier values 
of  Zr  for  Eucalyptus  analyses, which had more extreme 
outliers, led to less observable heterogeneity in the forest 
plots, and also reductions in our quantitative measures 
of heterogeneity. We did not observe a similar effect in 
the blue tit dataset because that dataset had outliers that 
were much less extreme and instead had more variability 
across the core of the distribution.

Our major observations raise two broad questions; 
why was the variability among results so high, and why 
did the pattern of variability differ between our two 
datasets. One important and plausible answer to the 
first question is that much of the heterogeneity derives 
from the lack of a precise relationship between the two 
biological research questions we posed and the data we 
provided. This lack of a precise relationship between 
data and question creates many opportunities for differ-
ent model specifications, and so may inevitably lead to 
varied analytical outcomes [8]. However, we believe that 
the research questions we posed are consistent with the 
kinds of research question that ecologists and evolution-
ary biologists typically work from. When designing the 
two biological research questions, we deliberately sought 
to represent the level of specificity we typically see in 
these disciplines. This level of specificity is evident when 
we look at the research questions posed by some recent 
meta-analyses in these fields:

• “how [does] urbanization impact mean phenotypic 
values and phenotypic variation … [in] paired urban 
and non-urban comparisons of avian life-history 
traits”  [22]

• “[what are] the effects of ocean acidification on the 
crustacean exoskeleton, assessing both exoskeletal 
ion content (calcium and magnesium) and functional 
properties (biomechanical resistance and cuticle 
thickness)”  [95]

• “[what is] the extent to which restoration affects both 
the mean and variability of biodiversity outcomes … 
[in] terrestrial restoration”  [7]

• “[does] drought stress [have] a negative, positive, or 
null effect on aphid fitness” [58]
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• “[what is] the influence of nitrogen-fixing trees on 
soil nitrous oxide emissions”  [53]

There is not a single precise answer to any of these 
questions, nor to the questions we posed to analysts 
in our study. And this lack of single clear answers will 
obviously continue to cause uncertainty since ecolo-
gists and evolutionary biologists conceive of the differ-
ent answers from the different statistical models as all 
being answers to the same general question. A possible 
response would be a call to avoid these general ques-
tions in favor of much more precise alternatives   [8]. 
However, the research community rewards research-
ers who pose broad questions [98], and so researchers 
are unlikely to narrow their scope without a change in 
incentives. Further, we suspect that even if individual 
studies specified narrow research questions, other 
scientists would group these more narrow questions 
into broader categories, for instance in meta-analyses, 
because it is these broader and more general questions 
that often interest the research community.

Although variability in statistical outcomes among 
analysts may be inevitable, our results raise questions 
about why this variability differed between our two 
datasets. We are particularly interested in the differ-
ences in the distribution of  Zr  since the distributions 
of out-of-sample predictions were on different scales 
for the two datasets, thus limiting the value of com-
parisons. The forest plots of Zr  from our two datasets 
showed distinct patterns, and these differences are 
consistent with several alternative hypotheses. The 
results submitted by analysts of the Eucalyptus dataset 
showed a small average (close to zero) with most esti-
mates also close to zero (± 0.2), though about a third 
far enough above or below zero to cross the tradi-
tional threshold of statistical significance. There were 
a small number of striking outliers that were very far 
from zero. In contrast, the results submitted by ana-
lysts of the blue tit dataset showed an average much 
further from zero (−0.35) and a much greater spread 
in the core distribution of estimates across the range 
of  Zr  values (± 0.5 from the mean), with few modest 
outliers. So, why was there more spread in effect sizes 
(across the estimates that are not outliers) in the blue 
tit analyses relative to the Eucalyptus analyses?

One possible explanation for the lower heteroge-
neity among most  Eucalyptus  Zr  effects is that weak 
relationships may limit the opportunities for hetero-
geneity in analytical outcome. Some evidence for this 
idea comes from two sets of “many labs” studies in psy-
chology   [49, 50]. In these studies, many independent 

lab groups each replicated a large set of studies, includ-
ing, for each study, the experiment, data collection, 
and statistical analyses. These studies showed that, 
when the meta-analytic mean across the replications 
from different labs was small, there was much less het-
erogeneity among the outcomes than when the mean 
effect sizes were large  [49, 50]. Of course, a weak aver-
age effect size would not prevent divergent effects in 
all circumstances. As we saw with the Eucalyptus anal-
yses, taking a radically smaller subset of the data can 
lead to dramatically divergent effect sizes even when 
the mean with the full dataset is close to zero.

Our observation that dramatic sub-setting in 
the  Eucalyptus  dataset was associated with corre-
spondingly dramatic divergence in effect sizes leads us 
towards another hypothesis to explain the differences 
in heterogeneity between the  Eucalyptus  and blue tit 
analysis sets. It may be that when analysts often divide 
a dataset into subsets, the result will be greater het-
erogeneity in analytical outcome for that dataset. 
Although we saw sub-setting associated with dramatic 
outliers in the Eucalyptus dataset, nearly all other anal-
yses of  Eucalyptus  data used close to the same set of 
351 samples, and as we saw, these effects did not vary 
substantially. However, analysts often analyzed only a 
subset of the blue tit data, and as we observed, sample 
sizes were much more variable among blue tit effects, 
and the effects themselves were also much more vari-
able. Important to note here is that subsets of data may 
differ from each other for biological reasons, but they 
may also differ due to sampling error. Sampling error 
is a function of sample size, and sub-samples are, by 
definition, smaller samples, and so more subject to 
variability in effects due to sampling error  [46].

Other features of datasets are also plausible candidates 
for driving heterogeneity in analytical outcomes, includ-
ing features of covariates. In particular, relationships 
between covariates and the response variable as well as 
relationships between covariates and the primary inde-
pendent variable (collinearity) can strongly influence the 
modeled relationship between the independent variable 
of interest and the dependent variable [27, 70]. There-
fore, inclusion or exclusion of these covariates can drive 
heterogeneity in effect sizes (Zr). Also, as we saw with the 
two most extreme Zr values from the blue tit analyses, in 
multivariate models with collinear predictors, extreme 
effects can emerge when estimating partial correlation 
coefficients due to high collinearity, and conclusions 
can differ dramatically depending on which relation-
ship receives the researcher’s attention. Therefore, dif-
ferences between datasets in the presence of strong and/
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or collinear covariates could influence the differences in 
heterogeneity in results among those datasets.

Although it is too early in the many-analyst research 
program to conclude which analytical decisions or which 
features of datasets are the most important drivers of 
heterogeneity in analytical outcomes, we must still grap-
ple with the possibility that analytical outcomes may vary 
substantially based on the choices we make as analysts. If 
we assume that, at least sometimes, different analysts will 
produce dramatically different statistical outcomes, what 
should we do as ecologists and evolutionary biologists? 
We review some ideas below.

The easiest path forward after learning about this ana-
lytical heterogeneity would be simply to continue with 
“business as usual”, where researchers report results 
from a small number of statistical models. A case could 
be made for this path based on our results. For instance, 
among the blue tit analyses, the precise values of the 
estimated  Zr  effects varied substantially, but the aver-
age effect was convincingly different from zero, and a 
majority of individual effects (84%) were in the same 
direction. Arguably, many ecologists and evolutionary 
biologists appear primarily interested in the direction of 
a given effect and the corresponding p-value   [30], and 
so the variability we observed when analyzing the blue 
tit dataset may not worry these researchers. Similarly, 
most effects from the Eucalyptus analyses were relatively 
close to zero, and about two-thirds of these effects did 
not cross the traditional threshold of statistical signifi-
cance. Therefore, a large proportion of people analyzing 
these data would conclude that there was no effect, and 
this is consistent with what we might conclude from the 
meta-analysis.

However, we find the counter arguments to “busi-
ness as usual” to be compelling. For blue tits, there 
were a substantial minority of calculated effects that 
would be interpreted by many biologists as indicating 
the absence of an effect (28%), and there were three 
traditionally “significant” effects in the opposite direc-
tion to the average. The qualitative conclusions of ana-
lysts also reflected substantial variability, with fully 
half of teams drawing a conclusion distinct from the 
one we draw from the distribution as a whole. These 
teams with different conclusions were either uncertain 
about the negative relationship between competition 
and nestling growth, or they concluded that effects 
were mixed or absent. For the Eucalyptus analyses, 
this issue is more concerning. Around two-thirds of 
effects had confidence intervals overlapping zero, 
and of the third of analyses with confidence intervals 
excluding zero, almost half were positive, and the rest 

were negative. Accordingly, the qualitative conclusions 
of the  Eucalyptus  teams were spread across the full 
range of possibilities. But, as we describe in the next 
paragraph, even this striking lack of consensus may be 
much less of a problem than what could emerge as sci-
entists select which results to publish.

A potentially larger argument against “business as 
usual” is that it provides the raw material for biasing the 
literature. When different model specifications read-
ily lead to different results, analysts may be tempted to 
report the result that appears most interesting, or that is 
most consistent with expectation [36, 33]. There is grow-
ing evidence that researchers in ecology and evolution-
ary biology often report a biased subset of the results 
they produce  [26, 48] and that this bias exaggerates the 
average size of effects in the published literature between 
30 and 150%   [83, 121]. The bias then accumulates in 
meta-analyses, apparently more than doubling the rate 
of conclusions of “statistical significance” in published 
meta-analyses above what would have been found in the 
absence of bias  [121]. Thus, “business as usual” does not 
just create noisy results, it helps create systematically 
misleading results.

If we move away from “business as usual”, where do 
we go? Many obvious options involve multiple analy-
ses per dataset. For instance, there is the traditional 
robustness or sensitivity check [17, 85], in which the 
researcher presents several alternative versions of an 
analysis to demonstrate that the result is “robust” [59]. 
Unfortunately, robustness checks are at risk of the same 
potential biases of reporting found in other studies 
[96], especially given the relatively few models typically 
presented. However, these risks could be minimized 
by running more models and doing so with a pre-reg-
istration or registered report. Another option is model 
averaging. Averages across models often perform well 
[105], and in some forms this may be a relatively simple 
solution. Model averaging, as most often practiced in 
ecology and evolutionary biology, involves first identi-
fying a small suite of candidate models [20], then using 
Akaike weights, baBaselgased on Akaike’s Information 
Criterion (AIC), to calculate weighted averages for 
parameter estimates from those models. As with typi-
cal robustness checks, the small number of models lim-
its the exploration of specification space, but examining 
a larger number of models could become the norm. 
However, there are more concerning limitations. The 
largest of these limitations is that averaging regression 
coefficients is problematic when models differ in inter-
action terms or collinear variables   [21]. Additionally, 
weighting by AIC may often be inconsistent with our 
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modelling goals. AIC balances the trade-off between 
model complexity and predictive ability, but penaliz-
ing models for complexity may not be suited for test-
ing hypotheses about causation [4]. So, AIC may often 
not offer the weight we want to use, and we may also 
not wish to just generate an average at all. Instead, if 
we hope to understand an extensive universe of possi-
ble modelling outcomes, we could conduct a multiverse 
analysis, possibly with a specification curve [99, 100]. 
This could mean running hundreds or thousands of 
models (or more!) to examine the distribution of possi-
ble effects, and to see how different model specification 
choices map onto these effects. However, exploring 
large areas of specification space may come at the 
cost of including biologically implausible specifica-
tions. Thus, we expect a trade-off, and attempts to limit 
models to the most biologically plausible may become 
increasingly difficult in proportion to the number of 
variables and modelling choices. To make selecting 
plausible models easier, one could recruit multiple ana-
lysts to design one or a few plausible specifications each 
as with our “many analyst” study [96]. An alternative 
that may be more labor intensive for the primary ana-
lyst, but which may lead to a more plausible set of mod-
els, could involve hypothesizing about causal pathways 
with DAGs [directed acyclic graphs, Arif and MacNeil 
([5])] to constrain the model set. As with other options 
outlined above, generating model specifications with 
DAGs could be partnered with pre-registration to hin-
der bias from undisclosed data dredging.

Responses to heterogeneity in analysis outcomes 
need not be limited to simply conducting more 
analyses, especially if it turns out that analysis qual-
ity drives some of the observed heterogeneity. As we 
noted above, we cannot yet rule out the possibility that 
insufficient statistical expertise or poor-quality analy-
ses might drive some portion of the heterogeneity we 
observed. Improving the quality of analyses might be 
accomplished with a deliberate increase in investment 
in statistical education. Many ecology and evolutionary 
biology students learn their statistical practice infor-
mally, with many ecology doctoral programs in the 
USA not requiring a statistics course [107]), and no for-
mal courses of any kind included in doctoral degrees in 
most other countries. In cases where formal investment 
in statistical education is lacking, informal resources, 
such as guidelines and checklists, may help research-
ers avoid common mistakes. However, unless follow-
ing guidelines or checklists is enforced for publication, 
the adherence to guidelines is patchy. For example, 
despite the publication of guidelines for conducting 

meta-analyses in ecology, the quality of meta-analyses 
did not improve substantially over time   [52]. Even in 
medical research where adherence to guidelines such 
as the PRISMA standards for systematic reviews and 
meta-analyses is more highly valued, adherence is often 
poor  [81].

Although we have reviewed a variety of potential 
responses to the existence of variability in analytical out-
comes, we certainly do not wish to imply that this is a 
comprehensive set of possible responses. Nor do we wish 
to imply that the opinions we have expressed about these 
options are correct. Determining how the disciplines 
of ecology and evolutionary biology should respond to 
knowledge of the variability in analytical outcome will 
benefit from the contribution and discussion of ideas 
from across these disciplines. We look forward to learn-
ing from these discussions and to seeing how these disci-
plines ultimately respond.

Conclusions
Overall, our results suggest to us that, where there is 
a diverse set of plausible analysis options, no single 
analysis should be considered a complete or reliable 
answer to a research question. Further, because of the 
evidence that ecologists and evolutionary biologists 
often present a biased subset of the analyses they con-
duct [26, 48, 121], we do not expect that even a collec-
tion of different effect sizes from different studies will 
accurately represent the true distribution of effects   
[121]. Therefore, we believe that an increased level of 
skepticism of the outcomes of single analyses, or even 
single meta-analyses, is warranted going forward. We 
recognize that some researchers have long maintained 
a healthy level of skepticism of individual studies as 
part of sound and practical scientific practice, and it 
is possible that those researchers will be neither sur-
prised nor concerned by our results. However, we 
doubt that many researchers are sufficiently aware of 
the potential problems of analytical flexibility to be 
appropriately skeptical. We hope that our work leads 
to conversations in ecology, evolutionary biology, and 
other disciplines about how best to contend with het-
erogeneity in results that is attributable to analytical 
decisions.

Appendix 1
R Package References and Session Information
Table 7  shows all R packages and their versions used in 
the production of the manuscript.
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Table 7 R packages used to generate this manuscript. Please see the ManyEcoEvo: package for a full list of packages used in the 
analysis pipeline

Package Version Citation

base 4.4.0 R Core Team (R Core Team [87]

betapart 1.6 Baselga et al. (2023)

broom.mixed 0.2.9.5 Bolker et al. [13]

colorspace 2.1.0 Zeileis et al. [122]

cowplot 1.1.3 Wilke [118]

devtools 2.4.5 Wickham et al. (Wickham et al. [116])

EnvStats 2.8.1 Millard (Millard [68])

GGally 2.2.1 Schloerke et al. (Schloerke et al. [91])

ggforestplot 0.1.0 Scheinin et al. (Scheinin et al. [90])

ggh4x 0.2.8 van den Brand [109]

ggpubr 0.6.0 Kassambara (Kassambara [47])

ggrepel 0.9.5 Slowikowski (Slowikowski [102])

ggthemes 5.1.0 Arnold [6]

glmmTMB 1.1.8 Brooks et al. ([18])

gt 0.10.1 Iannone et al. (Iannone et al. [45])

gtsummary 1.7.2 Sjoberg et al. [101]

here 1.0.1 Müller Müller [71]

Hmisc 5.1.2 Harrell Jr [41]

irr 0.84.1 Gamer, Lemon, and Singh ([35])

janitor 2.2.0 Firke (Firke [32])

knitr 1.46 Xie (Xie [119])

latex2exp 0.9.6 Meschiari (Meschiari [66])

lme4 1.1.35.3 Bates et al. [11]

ManyEcoEvo 2.7.6 Gould et al. [38]

metafor 4.6.0 Viechtbauer [114]

modelbased 0.8.7 Makowski et al. (Makowski et al. [64])

multilevelmod 1.0.0 Kuhn and Frick (Kuhn and Frick [54])

MuMIn 1.47.5 Bartoń [9]

naniar 1.1.0 Tierney and Cook [106]

NatParksPalettes 0.2.0 Blake (Blake [12])

orchaRd 2 Nakagawa, Lagisz, et al. (2023)

parameters 0.21.7 Lüdecke et al. [60]

patchwork 1.2.0 Pedersen [84]

performance 0.11.0 Lüdecke, Ben-Shachar, et al. [61]

renv 1.0.2 Ushey and Wickham (Ushey and Wickham [108])

rmarkdown 2.27 Allaire et al. [3]

sae 1.3 Molina and Marhuenda (Molina and Marhuenda [69])

scales 1.3.0 Wickham, Pedersen, and Seidel [117]

see 0.8.4 Lüdecke, Patil, et al. [62]

showtext 0.9.7 Qiu Qiu [86]

specr 1.0.0 Masur and Scharkow (Masur and Scharkow [65])

targets 1.7.0 Landau [57]

tidymodels 1.1.1 Kuhn and Wickham [55]

tidytext 0.4.2 Silge and Robinson [97]

tidyverse 2.0.0 Wickham et al. [115]

withr 3.0.0 Hester et al. (Hester et al. [42])

xfun 0.44 Xie (Xie [120])
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Appendix 2

Table 8 Session info

setting value

version R version 4.4.0 (2024-04-24)

os macOS Ventura 13.6.9

system aarch64, darwin20

ui X11

language (EN)

collate en_US.UTF-8

ctype en_US.UTF-8

tz Australia/Melbourne

date 2024-09-17

pandoc 3.1.12.2 @ /opt/home-
brew/bin/ (via rmarkdown)
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